МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный исследовательский технический университет имени К.И.Сатпаева

Институт автоматики и информационных технологий

Кафедра автоматизация и управление

Темирбулат Салтанат Булаткызы

Разработка интеллектуальной системы управления центробежными концентраторами

ДИПЛОМНАЯ РАБОТА

Специальность <u>5В070200</u> – <u>Автоматизация и управление</u>

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный исследовательский технический университет имени К.И.Сатпаева

Институт автоматики и информационных технологий

Кафедра автоматизация и управление

ДОПУЩЕН К ЗАЩИТЕ Заведующий кафедрой АиУ канидат физ-мат наук ассоциированный профессор Институт затоматия ла в ров Н.У. 2022 F. 190 * WINNIG

ДИПЛОМНАЯ РАБОТА

На тему: «Разработка интеллектуальной системы управления центробежными концентраторами»

По специальности 5В0700 – Автоматизация и управление

Выполнила

Темирбулат С.Б.

Рецензент Руководитель ЦКиТТвОАиМ Порубов Д.А. (подпись) «<u>Иб</u>» мая 2022 г. Научный руководитель PhD, рениор-лектор <u>Исси</u> – Кулакова Е.А. (подпись) «<u>Иб</u>» <u>мак</u> 2022 г.

ГРАФИК

подготовки дипломной работы

Наименования разделов, перечень разрабатываемых вопросов	Сроки представления научному руководителю	Примечание
Теоретическая часть	24. P.Z. 2022 r.	
Практическая часть	S. P.S. D. A. A. S. T.	

Подписи

консультантов и нормоконтролера на законченную дипломную работу с указанием относящихся к ним разделов работы

				í
Наименования	Научный руководитель, консультанты, ФИО	Дата	Подпись	
разделов	Ф.И.О. (уч. степень звание)	Подплоания	n	
Теоретическая часть	Кулакова Е.А PhD, сениор-лектор	24.02.227.	8p	
Практическая часть	Кулакова Е.А PhD, сениор-лектор	2 <i>9, 02 . 2022</i> ;.	the	
Нормоконтроллер	H.C. Сарсенбаев, канд. техн. наук, ассистент профессор	17.0522	No	

lfh Кулакова Е.А Научный руководитель Темирбулат С.Б. Задание принял к исполнению обучающийся

«15» енваря 2022 г.

Дата

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный исследовательский технический университет имени К.И.Сатпаева

Институт автоматики и информационных технологий

Кафедра автоматизация и управление

УТВЕРЖДАЮ Заведующий кафедрой АиУ канидат физ-мат наук ассоциированный профессор Алдияров Н.У. «<u>12</u>» <u>шал 2022 г.</u>

ЗАДАНИЕ

на выполнение дипломной работы

Обучающемуся <u>Темирбулат С.Б.</u>

Тема: Разработка интеллектуальной системы управления центробежными концентраторами.

Утвержден приказом ректора Университета № <u>489-П/ Ө</u>, от <u>«24» декабря</u> 2021 г. Срок сдачи законченной работы «<u>45</u>» <u>апреия</u> 2022 г.

Исходные данные дипломной работы: <u>техническая документация к</u> оборудованию Falcon C1000, данные после опроса экспертов-технологов, работающих на объекте.

Перечень подлежащих разработке в дипломной работе вопросов или краткое содержание дипломной работы: <u>а) описать принцип работы центробежного концентратора;</u> <u>б) проанализировать математическую модель движения частиц в центробежном концентраторе;</u> <u>в) разработать интеллектуальную систему управления;</u> <u>г) оценить адекватность интеллектуальных моделей.</u>

Перечень графического материала (с точным указанием обязательных чертежей): функциональная схема центробежного концентратора.

Рекомендуемая основная литература:

1 <u>B A Suleimenov, Ye. Kulakova Intelligent subsystem for determining the optimum</u> <u>pulsation frequency of a jigging machine // The 16th International Scientific</u> <u>Conference "Information Technologies and Management". – 2018. – Vol.1– C. 49-</u> <u>50.</u>

2 <u>Концентраторы «Фалкон» модель С1000. Инструкция по установке и</u> эксплуатации.

ОТЗЫВ НАУЧНОГО РУКОВОДИТЕЛЯ

<u>на дипломную работу</u> <u>Темирбулат Салтанат Булаткызы</u> <u>5В070200 – Автоматизация и управление</u>

Тема: <u>«Разработка интеллектуальной системы управления</u> <u>центробежными концентраторами»</u>

Перед дипломантом ставилась задача разработка интеллектуальной системы управления центробежным концентратором.

В первом разделе данной дипломной работы был исследован процесс центробежный рассмотрен гравитационного обогащения. Детально процесс для обогащения. Описан концентратор В качестве объекта Приведена разделения фракции. породы тяжелую на легкую И функциональная схема.

Во втором разделе были описаны математические формулы для описание движения частиц в центробежном аппарате. Рассмотрены уравнения Навье-Стокса, Шохина, Лященко, Аллена, Риттенгера.

Третий раздел является практическим и включает в себя синтез интеллектуальных моделей на основе нечеткой логики, нейронных сетей сетей. Даны прямого радиального распространения, гибридных И интеллектуальных систем И результаты математические описания эксперимента в среде Matlab. В качестве обучающей выборки была взята матрица полного факторного эксперимента.

В третьем разделе произведен анализ полученных моделей по критериям: среднеквадратичная ошибка, средняя абсолютная ошибка, корреляция экспертных и модельных значений. По полученным данным следуют выводы, что гибридная сеть обладает более высокой точностью.

В процессе работы автор работы показал себя дисциплинированным, исполнительным и трудолюбивым, с высоким уровнем теоретической подготовки.

Заключение: Считаю, что дипломант справился с поставленной задачей, дипломная работа соответствует требованиям, предъявляемым к дипломным работам по специальности 5В070200 – Автоматизация и управление. На основании характеристики выполненных исследований, уровня и качества выполненных результатов студент Темирбулат С.Б. допускается к защите.

Научный руководитель

PhD, сениор-лектор _____Кулакова Е.А.

«6» мая 2022 г.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ БІЛІМ және ҒЫЛЫМ МИНИСТРЛІГІ Қ.И. СӘТБАЕВ атындағы ҚАЗАҚ ҰЛТТЫҚ ТЕНИКАЛЫҚ УНИВЕРСИТЕТІ

РЕЦЕНЗИЯ

<u>на дипломную работу</u> <u>Темирбулат Салтанат Булаткызы</u> <u>5В070200 – Автоматизация и управление</u>

На тему: <u>«Разработка интеллектуальной системы управления</u> <u>центробежными концентраторами»</u>

В рецензируемой дипломной работе рассматривается актуальная задача разработки интеллектуальной системы управления центробежным концентратором.

В первой части работы рассматриваются теоретические сведения о процессе гравитационного обогащения. Дается описание и принцип работы центробежного концентратора Falcon C1000, выбранного в качестве объекта управления.

Во второй части представлена математическая модель движения частиц в аппарате.

Третья часть посвящена созданию интеллектуальных моделей управления центробежным концентратором. Произведен синтез интеллектуальных моделей с помощью нейронных сетей прямого и радиального распространения, нечеткой логики и нейро-нечетких сетей.

Четвертая часть является анализирующей. Произведены расчеты для оценки адекватности полученных моделей. По полученным результатам сделан анализ и выявлена наиболее точная интеллектуальная модель.

Тема дипломной работы раскрыта в полной мере. Обосновано применение интеллектуальной системы управления центробежным концентратором. Приведен подробный анализ разработанных алгоритмов управления. Графический и текстовый материал оформлен в соответствии с требованиями ГОСТ, предъявляемыми к оформлению учебных работ.

Оценка работы

Считаю, что дипломная работа заслуживает оценки «отлично», а бакалавру Темирбулат С.Б., присвоения академической степени бакалавр по специальности <u>5B070200 – Автоматизация и управление</u>.

Рецензент

руководитель центра компетенций и трансфера технологий в области автоматизации и мехатроники ВКТУ им. Серикбаева доктор PhD

Протокол

о проверке на наличие неавторизованных заимствований (плагиата)

Автор: Темирбулат С.Б

Соавтор (если имеется):

Тип работы: Дипломная работа

Название работы: Разработка интеллектуальной системы управления центробежными концентраторами

Научный руководитель: Нурлан Сарсенбаев

Коэффициент Подобия 1: 4.8

Коэффициент Подобия 2: 3.1

Микропробелы: 30

Знаки из здругих алфавитов: 29

Интервалы: 0

Белые Знаки: 0

После проверки Отчета Подобия было сделано следующее заключение:

🗹 Заимствования, выявленные в работе, является законным и не является плагиатом. Уровень подобия не превышает допустимого предела. Таким образом работа независима и принимается.

□ Заимствование не является плагиатом, но превышено пороговое значение уровня подобия. Таким образом работа возвращается на доработку.

Выявлены заимствования и плагиат или преднамеренные текстовые искажения (манипуляции), как предполагаемые попытки укрытия плагиата, которые делают работу противоречащей требованиям приложения 5 приказа 595 МОН РК, закону об авторских и смежных правах РК, а также кодексу этики и процедурам. Таким образом работа не принимается.

В Обоснование: На вигие непулевних кондорициенто в транеро Свидано с истенуванием тех. истера турог которой инселется в свизан доступе. Несбходните сетеки прост Дата Заведующий кафедрой

02 05 d 2T.

Протокол

о проверке на наличие неавторизованных заимствований (плагиата)

Автор: Темирбулат С.Б

Соавтор (если имеется):

Тип работы: Дипломная работа

Название работы: Разработка интеллектуальной системы управления центробежными концентраторами

Научный руководитель: Нурлан Сарсенбаев

Коэффициент Подобия 1: 4.8

Коэффициент Подобия 2: 3.1

Микропробелы: 30

Знаки из здругих алфавитов: 29

Интервалы: 0

Белые Знаки: 0

После проверки Отчета Подобия было сделано следующее заключение:

Ш Заимствования, выявленные в работе, является законным и не является плагиатом. Уровень подобия не превышает допустимого предела. Таким образом работа независима и принимается.

□ Заимствование не является плагиатом, но превышено пороговое значение уровня подобия. Таким образом работа возвращается на доработку.

Выявлены заимствования и плагиат или преднамеренные текстовые искажения (манипуляции), как предполагаемые попытки укрытия плагиата, которые делают работу противоречащей требованиям приложения 5 приказа 595 МОН РК, закону об авторских и

В Обоснование: Налише непулевих когреринентов теребия свезано с использованием тех истература, которые илиотся в свезано доступе. Дата

03 PS. 22 r.

проверяющий эксперт Пр. Сулоскова 2 А.

АҢДАТПА

Дипломдық жұмыс орталықтан тепкіш концентратордың басқару жүйесін зерттеуге арналған. Басқару нысаны ретінде Falcon C1000 орталықтан тепкіш Жұмыста байыту концентраторы таңдалды. гравитациялық процесінің сипаттамасы және центрден тепкіш концентратордың жұмыс істеу принципі қарастырылады. Навье-Стокс, Шохин, Лященко, Аллен, Риттенгер теңдеулері негізінде орталықтан тепкіш концентратордағы бөлшектер қозғалысының жүргізіледі. математикалык моделінің талдауы Процесс көп өлшемді болғандықтан, дәлдігі жоғары математикалық модельдерді құру қиын. Сондықтан жұмыстың мақсаты оңтайлы интеллектуалды басқару жүйелерін құру болып табылады.

Жұмыс Matlab ортасында интеллектуалды алгоритмдерді құруды қамтиды. Практикалық бөлім анық емес логиканы, тікелей және радиалды нейрондык желілді гибридті желіні таралатын және колданатын интеллектуалды басқару модельдерін синтездеуден тұрады. Алынған модельдеу нәтижелері салыстырылды. Зерттеу барысында гибридті желілердің дәлдігі жоғары екені белгілі болды. Сондықтан басқару жүйесін құру кезінде гибридті желіні пайдалану ұсынылады.

АННОТАЦИЯ

Дипломная работа предназначена для исследования системы управления центробежным концентратором. В качестве объекта управления был выбран центробежный концентратор Falcon C1000. Рассматривается описание процесса гравитационного обогащения и принцип работы центробежного концентратора. Проводится анализ математической модели движения частиц в центробежном концентраторе на основе уравнений Навье-Стокса, Шохина, Лященко, Аллена, Риттенгера. Так как процесс является многомерным, создание адекватных математических моделей затрудняется. Поэтому целью работы является создание оптимальных интеллектуальных систем управления.

Работа включает в себя разработку интеллектуальных алгоритмов в среде Matlab. Практическая часть состоит из синтеза интеллектуальных моделей управления с помощью нечеткой логики, нейронных сетей прямого и и гибридной сети. Представлен радиального распространения анализ полученных результатов моделирования на адекватность. В ходе исследования стало известно, что гибридные сети имеют высокую точность. Таким образом, гибридную рекомендуется использовать сеть при создании системы управления.

ANNOTATION

The diploma work is intended to study the control system of a centrifugal concentrator. The Falcon C1000 centrifugal concentrator was chosen as the control object. The description of the process of gravitational enrichment and the principle of operation of a centrifugal concentrator are considered. The analysis of a mathematical model of particle motion in a centrifugal concentrator based on the equations of Navier-Stokes, Shokhin, Lyashchenko, Allen, Rittenger. Since the process is multidimensional, the creation of adequate mathematical models is difficult. Therefore, the aim of the work is to create optimal intelligent control systems.

The work includes the development of intelligent algorithms in the Matlab. The practical part consists of the synthesis of intelligent control models using fuzzy logic, neural networks of direct and radial propagation and a hybrid network. An analysis of the obtained simulation results for adequacy is presented. During the study, it became known that hybrid networks have high accuracy. Therefore, it is recommended to use a hybrid network when building a control system.

СОДЕРЖАНИЕ

Введение	9
1 Теоретическая часть	10
1.1 Гравитационное обогащение руды	10
1.2 Обогащение на центробежных концентраторах	11
1.2.1 Концентратор Falcon C1000	12
1.2.2 Функциональная схема центробежного концентратора	14
2 Анализ математической модели движения частиц в центробежн	IOM
концентраторе	16
3 Практическая часть	19
3.1 Идентификация ключевых переменных процессов гравитационно	ого
обогащения в центробежном концентраторе	19
3.2 Постановка задачи разработки интеллектуальной системы управления	19
3.3 Синтез интеллектуальных моделей (алгоритмов) управления процесс	юм
гравитационного обогащения в центробежном концентраторе	19
3.3.1 Синтез интеллектуальных моделей с помощью нечеткой логики	19
3.3.2 Синтез интеллектуальных моделей с помощью нейронных сетей	29
3.3.2.1 Нейронные сети. Общие понятия	29
3.3.2.2 Нейронная сеть прямого распространения	31
3.3.2.2 Радиально-базисная нейронная сеть	35
3.3.2 Синтез интеллектуальных моделей с помощью гибридных сетей	38
4 Оценка адекватности интеллектуальных моделей управления центробежн	ЫМ
концентратором	44
Заключение	48
Список использованной литературы	49
Приложение А	51
Приложение Б	54
Приложение В	57
Приложение Г	59

введение

Казахстан чрезвычайно богат полезными ископаемыми. В недрах земли выявлено 99 из 105 элементов таблицы Менделеева. Страна занимает лидирующие позиции по запасам природных ресурсов. В том числе первое место по запасам хрома, резервы которого составляют около 350 млн тонн. По расчетам ученых этого количества хватит на 90 лет. При этом страна обеспечивает 15 процентов мирового объема добычи хрома. Имеется 20 месторождений, большинство которых расположились на западе Казахстана: Алмаз-Жемчужина, Миллионное [1].

Местные руды имеют высокое содержание оксида хрома, составляющее около 50%. Еще одной отличительной особенностью является низкое содержание различных вредных примесей, как фосфор, сера или железо. Для разделения минералов от пустых пород применяются различные методы обогащения. Одним из широко распространенных методов является гравитационное обогащение в центробежных концентраторах.

Объектом исследования стал аппарат гравитационного обогащения – центробежный концентратор.

Экспериментальные исследования проводились в программном обеспечении Matlab.

Актуальность. В современных условиях экономического И эффективной экологического кризиса внедрение системы управления центробежным концентратором для процесса гравитационного обогащения хромовой руды является актуальной. Данный процесс является многомерным, поэтому создание адекватных математических моделей затрудняется. Для этого требуется дорогостоящая и длительная идентификация математической модели объекта. Таким образом, для оптимального управления было принято решение применение интеллектуальных технологий.

Цель работы: разработка интеллектуальной системы управления центробежным концентратором, обеспечивающая эффективную работу.

Задачи работы:

 определение математической модели для исследуемого объекта управления;

– обработка матрицы полного факторного эксперимента;

– создание моделей управления центробежным концентратором;

проверка адекватности созданных моделей по полученным результатам исследования.

Научной новизной работы является исследование работы центробежного концентратора на основе нечеткой логики, нейронных сетей прямого и радиального распространения, гибридных сетей, также определение наилучшего метода моделирования.

1 Теоретическая часть

1.1 Гравитационное обогащение руды

Добываемые человечеством ресурсы имеют минеральное происхождение. Минеральные ресурсы редко используются без обогащения. Обогащение производится для отделения ценных минералов от пустых пород. зависимости от физических и химических характеристик компонентов выбирается процесс разделения. Одним из таких процессов является гравитационное обогащение. Гравитационным обогащением принято называть процесс отделения частиц разного размера, плотности и формы друг от друга под действием силы тяжести или центробежной силы. Несмотря на широкое разнообразие методов обогащения, гравитационный метод занимает доминирующие позиции. Этому поспособствовал ряд преимуществ: дешевизна, отсутствие ограничений в крупности разделяемых минеральных частиц. Размеры частиц могут достигать от 7-10 мкм до 400 мм. Следует отметить, что при гравитационном обогащении свойства минералов не меняются.

Гравитационные методы обогащения могут использоваться как основные или вспомогательные методы в комбинированных схемах. При основном методе на выходе получается готовая продукция. К примеру, обогащение руд черных и благородных металлов, энергетических углей.

В комбинированных схемах благодаря гравитационному обогащению из руды разделяют от 30 до 60% отвальной породы. Для дальнейшего обогащения применяются другие методы.

Зачастую гравитационное обогащение используются в сочетании с промывкой, магнитной или электрической сепарациями.

Примером использования данного метода в качестве вспомогательного служит центрифугирование в схемах по обезвоживанию продуктов предназначенных для обогащения [2].

В Казахстане в 1984 года началось строительство фабрик обогащения. К ним можно отнести Донской горно-обогатительный комбинат.

Руда проходит процессы дробления и сортировки на богатом тракте. На выходе получают готовые товарные продукты класса крупности 0-10 мм и 10-160 мм. На бедном тракте сырье попадает с шахты на грохочение и дробление на классы крупности 0-3 мм, 3-10мм, 10-160 мм [3].

Донской горно-обогатительный комбинат обеспечивает весь объем добываемой в Казахстане хромовой руды: так, в 2005 году комбинатом было выпущено 3579 млн тонн. Сырьевая база предприятия – это более 300 млн тонн подтвержденных и около 800 млн тонн прогнозных запасов руды. Помимо производства кусковой хромовой руды, комбинат осуществляет и переработку накопившихся запасов руд более мелкого класса, для чего им запущены производственные мощности, базирующиеся на инновационных технологиях [4].

Большая часть добытой руды поставляется на ферросплавные заводы

в Аксу и Актобе. Руда с высоким содержанием оксида хрома (до 62% Cr₂O₃) применяется для выплавки ферросплавов в металлургии, изготовления огнеупоров и в химической промышленности для производства хромовых соединений [5].

1.2 Обогащение на центробежных концентраторах

Одним из старейших объектов для обогащения являются центробежные концентраторы. Разделение частиц в данном аппарате производится в потоке воды под действием центробежных сил, которые превосходят силы тяжести. За счет создания центробежного поля минералы разделяются быстрее. Принцип действия такого аппарата основан на разделении породы на легкую и тяжелую фракции.

В зависимости от принципа создания центробежного поля данные концентраторы можно разделить на два типа:

- безнапорные;

– короткоконусные циклоны или водные циклоны. В них пульпа подается под определенным давлением.

Как показано на рисунке 1 концентратор имеет цилиндрическую часть и коническую.

Под напором исходное питание _ пульпа подается к стенке концентратора, где находятся тяжелые частицы. Далее частицы при наличии центробежного поля распределяются по радиусу. Легкие фракции не турбулентного осаждаются стенках, a выводятся наверх на из-за перемешивания пульпы.

По причине того, что подобные концентраторы не способны иметь высокую степень концентрации, применяются они только при первичном обогащении для получения грубых концентратов, переработки бедных продуктов.

Безнапорные центробежные концентраторы также нашли широкое применение. Данные аппараты способны обогащать мелкие частицы и имеют высокую степень концентрации. В отличие от концентраторов циклонного типа исходное питание подается сверху. При вращении аппарата создается центробежное поле. Пульпа движется снизу верх и закручивается вращающейся стенкой у сливного края центрифуги. Таким образом, получается трехмерный спиральный поток. Таким образом, в нижней части аппарата не образуется постель из частиц. Все частицы, образуя конус, поднимаются верх и испытывают большое воздействие смывного потока и слабое центробежных сил. По мере продвижения верх центробежные силы растут. Частицы из этого потока выпадают на стенку и образуют придонную постель, разрыхленность которой постепенно снижается, а толщина слоя и крупность частиц увеличивается [6].

1 – корпус; 2 – питающий патрубок; 3 – сливная насадка; 4 – песковая насадка типа гидроциклонов

Рисунок 1 – Центробежный концентратор циклонного типа

Угол конусности у концентратора варьируется в пределах 90-140°.

1.2.1 Концентратор Falcon C1000

В данной работе эксперименты проводились на концентраторе Falcon C1000. Аппарат применяется в случае, когда необходим достаточно большой выход концентрата или для извлечения тонких частиц, если другие методы бессильны. Для этого он обладает мощным центробежным полем. Falcon C1000 предназначен для непрерывной работы и его производительность может достигнуть до 100 т/ч. К тому же занимаемая площадь является небольшой. Концентратор изготавливается из износостойких материалов [7].

Для изготовления концентратора были использованы различные высокопрочные материалы: нержавеющая сталь, карбид вольфрама и нихард, полиуретан, резина.

В таблице 1 указаны характеристики концентратора.

Наименование параметра	Значение, ед. изм.
Размер частиц в питании	До 1 мм
Максимальная плотность пульпы	50% твердого по весу
Вес концентратора	2955 кг
Габариты	1550 × 1550 × 2550 мм
Мощность двигателя	20 л.с., 15 кВт
Максимальный размер частиц	1 мм
Максимальная производительность по	27 т/ч
твердому веществу	
Максимальная производительность по	1230 л/мин
пульпе	
Центробежная сила G	50-300
Вода под давлением (промывочная)	Разжижающая вода 95 л/мин при
	200 кПа.
	Вода для очистки 190 л/мин при
	200 кПа

Таблица 1 – Характеристики центробежного концентратора Falcon C1000

Принцип работы заключается в следующем: на частицы действует гравитационная сила, и плавно двигаясь по стенке ротора, они разделяются по удельному весу.

Для начала проводится процесс грохочения питания по классу 1мм. Далее через центральную питающую трубу пульпа подается в аппарат и ускоряется импеллером.

Аппарат имеет зоны миграции и удержания.

Зона миграции – зона, где производится ускоренное разделение материала благодаря центробежному полю. Величину поля можно регулировать, изменяя преобразователем частоты скорость вращения ротора.

По окружности ротора расположены различные порты, через которые удаляется тяжелая фракция. Данная зона называется зоной удержания. Дроссельные форсунки контролируют поток тяжелой фракции. В точках разгрузки концентратора, где друг против друга расположены кольцевые желоба накапливается тяжелая фракция. Для разжижения в эту часть подается вода.

В то время в верхнюю часть выходит легкая фракция и часть воды. В дальнейшем попадает во внешний круговой желоб и выводится из машины. Схема концентратора изображена на рисунке 2 [20].

Данную серию концентраторов принято использовать для извлечения хрома, железа, вольфрама, кобальта.

Как указано в [8] преимуществом аппарата считается более высокое

Рисунок 2 – Схема концентратора Falcon C1000

центробежное ускорение относительно других моделей и низкие эксплуатационные затраты.

1.2.2 Функциональная схема центробежного концентратора

Функциональная автоматизации схема охватывает промышленное оборудование нижнего уровня системы и демонстрирует его связь с приборами, аппаратурой контроля и управления более высокого уровня. Функциональная схема представляет систему управления в виде комбинации различных блоков и стрелок, обеспечивает выход системы как результат совместного события, определяемого входными данными системы и ее различными состояниями. Им физический характер элементов функцию. можно описать И Однако отсутствует математическое описание системы.

На рисунке 3 представлена функциональная схема автоматизации центробежного концентратора.

В качестве программируемого логического контроллера был выбран Simatic s7-300. Данный контроллер используется при построении систем различной сложности: в основном при низкой и средней степени.

Преимуществом считает и удобство эксплуатации и наличие модульной конструкции. Имеется структура локального и распределенного ввода-вывода. Контроллер связан с Matlab. В данной среде рассчитываются оптимальные значения ключевых переменных.

Рисунок 3 – Функциональная схема центробежного концентратора

На модули ввода контроллера поступают сигналы с позиции AIT 04, AIT 05, которые представляют собой рентгенофлуоресцентные цеховые концентратомеры РКЦ-1М. Ими измеряется содержание Cr₂O₃ в питании, концентраторе, хвостах.

С модулей вывода информация передается на преобразователь частоты электродвигателя и воздушные клапаны позиции которых VSC 03, SIC 04, SIC 06, обеспечивающие степень открытия дроссельных заслонок в зависимости от давления поданного воздуха и клапан питания с позицией DIT 01 [14].

2 Анализ математической модели движения частиц в центробежном концентраторе

По ранее рассмотренным данным известно, что частицы в центробежном концентраторе движутся во вращающемся центробежном поле. Их движения могут быть свободными или стесненными. Для определения скорости частиц при свободном или стесненном поле используют формулы Навье-Стокса, Лященко, Аллена или Риттенгера [9].

На рисунке 4 изображена скорость движения частиц руды в концентраторе. Толстой черной линией изображена пустая порода, а тонкой – концентрат. Скорость движение частиц гораздо превышает скорости пустых пород, что приводит к выводу о том, что при обогащении на центробежном концентраторе необходимо учитывать ускорение. Ускорение имеет огромное воздействие на сам процесс.

Рисунок 4 – Зависимость скорости движения частиц ϑ от центробежного ускорения g

В [10] рассмотрено движение частиц во вращающейся жидкости, и получено выражение для относительной скорости перемещения частиц в радиальном направлении ϑ_T , которая будет определяться соотношением величин центробежной, центростремительной и гидродинамической сил:

$$\vartheta_T = [(\rho_T - \rho)V_T]^{1/2} \frac{(\epsilon \lambda)^{1/3}}{\rho^{1/3} (\rho_T V_T + K_f \rho S \lambda)^{1/2}},\tag{1}$$

где ρ_T , ρ – соответственно плотность частиц и жидкости, кг/м³;

 V_T – объем частицы, м³;

є – потери энергии турбулентных вихрей за единицу времени в единице объема, Дж/с·м³;

 λ – размер турбулентных вихрей, м;

*К*_{*f*} – коэффициент сопротивления частицы;

S – площадь сечения частицы, м².

Анализ формулы (1) показал, что на величину и направление вектора скорости частицы во вращающейся жидкой среде оказывает влияние турбулентность потока в центробежном поле и физические параметры самой частицы. Отмечается, что частицы различной плотности и крупности будут расслаиваться как по высоте, так и по радиусу центробежного аппарата и концентрироваться в определенных его зонах.

Математическую модель движения жидкости в центробежном концентраторе можно описать уравнением Навье-Стокса [11,12]:

$$\frac{d\vartheta}{dt} = \vec{F} \frac{1}{\rho} gradP + \nabla^2 \vec{\vartheta}, \qquad (2)$$

где *θ* – вектор скорости частиц;

t – время, с;

F – вектор внешней удельной силы;

 ρ – плотность, кг/м3;

Р – давление, Па;

∇ – оператор Гамильтона.

При этом

$$\frac{d\vartheta}{dt} = \left(\frac{d\vartheta_x}{dt} + \vartheta_x \frac{d\vartheta_x}{dx} + \vartheta_y \frac{d\vartheta_x}{dy} + \vartheta_z \frac{d\vartheta_x}{dz}\right) i + \left(\frac{d\vartheta_y}{dt} + \vartheta_x \frac{d\vartheta_y}{dx} + \vartheta_y \frac{d\vartheta_y}{dy} + \vartheta_z \frac{d\vartheta_y}{dz}\right) j + \left(\frac{d\vartheta_z}{dt} + \vartheta_x \frac{d\vartheta_z}{dx} + \vartheta_y \frac{d\vartheta_z}{dy} + \vartheta_z \frac{d\vartheta_z}{dz}\right) k,$$
(3)

$$\vec{F} = Xi + Yi + Zk,\tag{4}$$

$$gradP = \frac{\partial p}{\partial x}i + \frac{\partial p}{\partial y}j + \frac{\partial p}{\partial z}k,$$
(5)

$$\nabla^2 \vec{\vartheta} = \left(\frac{\partial^2 \vartheta_x}{\partial x} + \frac{\partial^2 \vartheta_x}{\partial y} + \frac{\partial^2 \vartheta_x}{\partial z}\right) i + \left(\frac{\partial^2 \vartheta_x}{\partial x} + \frac{\partial^2 \vartheta_x}{\partial y} + \frac{\partial^2 \vartheta_x}{\partial z}\right) j + \left(\frac{\partial^2 \vartheta_x}{\partial x} + \frac{\partial^2 \vartheta_x}{\partial y} + \frac{\partial^2 \vartheta_x}{\partial z}\right) k.$$
(6)

В свою очередь Шохиным В.Н. [13] получено уравнения зависимости извлечения минерала от времени работы концентратора:

$$\varepsilon = At^{-(B-K\rho)},\tag{7}$$

где А, В, К – коэффициенты, зависящие от условий процесса;

t – время работы аппарата, мин;

 ρ – плотность материала, кг/м³.

Время работы концентратора зависит от плотности, чем оно больше, тем

продолжительнее работает аппарат.

Исходный материал в конусе сепаратора прижимается к боковым стенкам направленной радиально центробежной силой F_{иб}. При подаче струи жидкости в пристеночный слой материала на него действует сила сдвига F_{сд}, направленная по касательной к окружности вращения слоя материала. F_{сд} возникает в результате изменения направления потока турбулизирующей воды на 90° и направлена навстречу движению слоя материала.

3 Практическая часть

3.1 Идентификация ключевых переменных процессов гравитационного обогащения в центробежном концентраторе

Проанализировав рисунок зависимости скорости движения частиц от центробежного ускорения, следует вывод, что ускорение имеет большое влияние. После проведения опроса экспертов были выведены следующие ключевые переменные: ширина открытия дроссельных форсунок, степень открытия клапана подачи питания, центробежная сила разделения.

3.2 Постановка задачи разработки интеллектуальной системы управления

Главное задачей настоящей работы является создание интеллектуальной системы управления центробежным концентратором, которая обеспечивает эффективную работу аппарата. Необходимо определить значения ключевых переменных.

3.3 Синтез интеллектуальных моделей (алгоритмов) управления процессом гравитационного обогащения в центробежном концентраторе

3.3.1 Синтез интеллектуальных моделей с помощью нечеткой логики

Результаты полного факторного эксперимента для центробежного концентратора указаны в таблице 2. Эти данные будут применяться как обучающая выборка [14].

Плотность	Содержа -	Содержа -	Критерий	Частота	Ширина	Степень
пульпы	ние Cr ₂ O ₃ в	ние Cr ₂ O ₃ в	питания	вращения	открытия	открытия
Q ₁₁ , %	хвостах	концентр	Р	импеллера	форсунок	клапана
	Q _{xb} , %	ате Q _к , %		n, Гц	d, мм	m, %
1	2	3	4	5	6	7
0,00	0,00	0,00	0,00	0,5	0,5	0
0,50	0,00	0,00	0,00	0,5	0,5	0,5
0,00	0,50	0,00	0,00	0,9	0,20	0
0,00	0,00	0,50	0,00	0,6	0,3	0,1
0,00	0,00	0,00	0,50	0,5	0,5	0,3
1,00	0,00	0,00	0,00	0,8	0,7	0,3

Таблица 2 – Матрица полного факторного эксперимента

4 2 3 5 7 1 6 0,00 1,00 0,00 0.4 0,00 0,6 0,10,00 0,00 1,00 0,00 0,5 0,5 0 0.00 0,00 0.00 1.00 0,3 0,3 0,8 0,50 1.00 0.00 0.00 0,4 0,2 0,5 1.00 0.50 0.00 0.00 0.8 0,5 1 0,00 1.00 0.50 0.00 0,55 0,3 0,10,00 0,00 1,00 0,50 0,5 0,5 0,5 1,00 0,00 0,9 0,2 0 1,00 0,00 0,7 0.00 1,00 0.50 1.00 0,5 0,4 0.3 0.4 0.00 0.00 1.00 1.00 0.8 0,00 0,00 0.00 1.00 0,50 0,70 0 0,50 0,70 0,00 0.00 0.00 0.50 0 0,50 0,00 0,00 0,00 0,5 0,5 0 0,5 0,5 0.00 0,00 0,50 0.00 0,5 0.00 0,00 0.00 0,50 0,9 0,20 0 0.10 0.00 0.00 0.00 0.6 0.3 0.1 0.00 0.00 1,00 0.00 0,5 0,5 0.3 0.00 0.00 1.00 0.00 0.8 0.7 0.3 0,00 0,00 0,00 1,00 0,4 0,10,6 0,50 1,00 0,00 0,00 0,5 0,5 0 1,00 0,50 0,00 0,00 0,3 0,8 0,3 0,00 1,00 0,50 0,00 0,4 0,2 0,5 0,00 0,8 1 0,00 1,00 0,50 0,5 0,3 0,1 1,00 1,00 0,00 0,55 0,00 0.00 1.00 0.50 0.00 0.5 0,5 0.5 1,00 0,3 0,00 0,00 0,00 0,5 0,5 0,00 0,50 1,00 0,00 0,8 0,7 0,3 1,00 0,50 0,00 0,00 0,4 0,6 0,10 0.00 1,00 0,50 0.00 0,5 0,5 0,00 0,50 0,3 0,3 0,8 0.00 1,00 1.00 1.00 0.00 0.00 0.4 0,2 0,5 0,50 0,00 1,00 0,00 0,8 0,5 1 0.10 0,55 0.00 0.00 0.00 0,3 0,10,00 0,00 0,00 1,00 0,5 0,5 0,5 0.50 0.00 0.00 0.00 0,9 0.2 0 0.00 0.50 0.00 0.00 0.5 0.4 0.70,50 0,00 0,00 0,00 0,3 0,4 0,8 0.00 0.00 0.00 0.50 0.50 0.70 0 0 0,10 0,00 0,00 0,00 0,50 0,70 0,5 0 0.00 1.00 0.00 0.00 0.5

Продолжение таблицы 2

1		· · · · · · · · · · · · · · · · · · ·				
1	2	3	4	5	6	7
0,00	0,00	1,00	0,00	0,5	0,5	0,5
0,00	0,00	0,00	1,00	0,9	0,20	0
0,50	1,00	0,00	0,00	0,6	0,3	0,1
1,00	0,50	0,00	0,00	0,5	0,5	0,3
0,00	1,00	0,50	0,00	0,8	0,7	0,3
0,00	0,00	1,00	0,50	0,4	0,6	0,1
1,00	1,00	0,00	0,00	0,5	0,5	0
0,00	1,00	0,50	0,00	0,3	0,3	0,8
0,00	0,00	0,10	0,00	0,4	0,2	0,5
0,00	0,00	0,00	1,00	0,8	0,5	1
0,50	0,00	0,00	0,00	0,55	0,3	0,1
0,00	0,50	0,00	0,00	0,5	0,5	0,5
0,00	0,00	0,50	0,00	0,9	0,2	0
0,00	0,00	0,00	0,50	0,5	0,4	0,7
0,10	0,00	0,00	0,00	0,3	0,4	0,8
0,00	1,00	0,00	0,00	0,50	0,70	0
0,00	0,00	1,00	0,00	0,50	0,70	0
0,00	0,00	0,00	1,00	0,8	0,5	1
0,50	1,00	0,00	0,00	0,55	0,3	0,1
1,00	0,50	0,00	0,00	0,5	0,5	0,5
0,00	1,00	0,50	0,00	0,9	0,2	0
0,00	0,00	1,00	0,50	0,5	0,4	0,7
1,00	1,00	0,00	0,00	0,3	0,4	0,8
0,00	1,00	0,50	0,00	0,50	0,70	0
0,00	0,00	0,10	0,00	0,50	0,70	0
0,00	0,00	0,00	1,00	0,7	0,3	1

Продолжение таблицы 2

Нечеткая логика отличается от классической тем, что стираются понятия истина и ложь, а вместо этого применяется степень истинности. Степень истинности принимает диапазон значений от 0 до 1. Нечеткая логика состоит из набора правил. Широкое применения нашли треугольные и трапециевидные нечеткие числа. У первого функция принадлежности выражается треугольной функцией и описывается следующим образом:

$$A = < a, \alpha, \beta > \Delta \tag{8}$$

где а – это модальное значение треугольного нечеткого числа;

α – левый коэффициент нечеткости;

β – правый коэффициент нечеткости.

Сама треугольная функция записывается в виде fΔ(x; a, b, c). Тогда левый и правый коэффициенты находятся по формуле согласно [14]:

$$\alpha = b - a, \beta = c - b \tag{9}$$

Как показано на рисунке 5, мы имеем треугольное нечеткое число <3, 1, 2> Δ , левый и правый коэффициенты которого равны 1 и 2 соответственно.

Рисунок 5 – Треугольное нечеткое число

Трапециевидный нечеткий интервал имеет трапециевидную функцию fT (x, a, b, c, d). Записывается данный интервал следующим образом:

$$\widetilde{A}_{T} = \langle a, b, \alpha, \beta \rangle_{T}$$
(10)

где а и b— соответственно нижнее и верхнее модальные значения;

α и β — левый и правый коэффициенты нечеткости соответственно.

Левый и правый коэффициенты нечеткости трапециевидного нечеткого интервала соответственно равны:

$$\alpha = b - a, \beta = d - c \tag{11}$$

Трапециевидный нечеткий интервал <4, 6, 2,1>_т, который соответствует "нечеткому интервалу от 4 до 6", изображен на рисунке 6 [14].

Рисунок 6 – Трапециевидный нечеткий интервал

Треугольные нечеткие числа и трапециевидный нечеткий интервал разумно применять из-за элементарности выполнения операции над ними. Так же они имеют наглядную графическую интерпретацию. По исследованиям [14] было выведено, что треугольные термы дают результат лучше чем трапециевидные, то есть являются более адекватными. Следовательно, моделирование будет производиться с использованием треугольных термов.

Для построения термов был применен метод парных сравнений и шкала Саати. Метод парных сравнений — один из инструментов оценки и выбора решений, широко используется в экспертных оценках при необходимости расставлять приоритеты в процессе какой-либо деятельности или ранжирования различных объектов. К примеру, построим терм для переменной «Содержание Cr₂O₃ в хвостах». При построении вышеуказанным методом применяется шкала Саати, где расставляются степени предпочтений.

Таблица 3 – Шкала Саати

Степень предпочтения одного объекта перед другим	Мера важности (значимости) предпочтения, a _{ij}
Равная важность (значимость). Нет предпочтения	1
Слабое превосходство по важности. Слабое предпочтение.	3
Существенное или сильное превосходство по важности (значимости). Сильное предпочтение.	5
Очень сильное или значительное превосходство по важности (значимости). Очень сильное предпочтение.	7
Абсолютное превосходство. Абсолютное предпочтение.	9
Промежуточная оценка меры предпочтения между соседними значениями	2, 4, 6, 8

В первую очередь строится матрица парных сравнений

$$A = (a_{ij}), i, j = 1, 2, \dots, n$$
(12)

где $a_{ij} = w_i / w_j$ - уровень приемущества элемента a_i над a_j ;

 W_i – «вес» -го элемента.

Матрица парных сравнений является диагональной $a_{ii} = 1, i = 1, 2, ..., n$ и

обратно симетричной $a_{ij} = \frac{1}{a_{ji}}$, i, j = 1, 2, ..., n.

Строится матрица парных сравнений следущющим образом: например, значение пересечения сроки 2 и столбца 1 соответствует 6, что означает о максимальном превосходстве 0,8 над 0,7 согласно таблице 3. В таком случае пересечение строки 1 и столбца 3 будет равным 1/6.

Далее вычисляется субнормальное и нормальное нечеткие множества.

Первый шаг – определение геометрического среднего ее элементов согласно [14] по формуле

$$a_i = \left(\prod_{j=1}^n a_{ij}\right)^{\frac{1}{n}}, i = 1, 2, \dots, n.$$
(13)

Следующим вычисляется значения функции принадлежности субнормального нечетского множества

$$K_i = \frac{a_i}{\sum_{i=1}^n a_i}, i = 1, 2, \dots, n.$$
(14)

Функция принадлежности нормализованного нечеткого множества определяется по формуле

$$K_i/K_{max},\tag{15}$$

где *K_i* - каждый элемент субнормального нечеткого множества;

K_{max}- максимальное значение.

Оценка важности критериев указана в таблице 4.

Таблица 4 – Оценка важности критериев

		1	2	3			
		0,7	0,8	1	Геометричес кое среднее, <i>a_i</i>	Субнормальное нечеткое множество, <i>K_i</i>	Нормальное нечеткое множество, <i>K_i/K_{max}</i> ,
1	0,7	1	1/6	1/9	0,26	0,061	0,1
2	0,8	6	1	1/2	1,44	0,33	0,55
3	1	9	2	1	2,62	0,6	1
Итого					4,32		

На рисунке 7 изображена половина терма «Н – высокое содержание» лингвистической переменной «Содержание Cr₂O₃ вхвостах».

Рисунок 7 – Функция принадлежности нечеткого множества

Моделирование нечеткого алгоритма производится в системе Matlab в редакторе FuzzyLogic. Для этого требуется ввести команду fuzzy. По умолчанию установлен алгоритм вывода Мамдани. Алгоритм представляет собой «черный ящик», при котором на вход поступаются количественные значения, на выходе они же. На промежуточных этапах используется нечеткая логика и теория нечетких множеств.

Первым этапом служит создание входных и выходных переменных. На рисунке 8 изображен редактор «Fuzzy Logic Designer». Входными переменными служат Q_{π} – плотность пульпы, Q_x – содержание Cr_2O_3 в хвостах, Q_{κ} – содержание Cr_2O_3 в концентрате. Выходные лингвистические переменные: n – частота вращения импеллера, d – ширина открытия форсунок, m – степень открытия клапана.

Переходя по каждой лингвистической переменной нам открывается окно редактирования. Входные переменные имеют треугольную функцию принадлежности и по 3 терма: L – низкое, M – среднее, H – высокое значения. В части Current Variable указываются название лингвистической переменной, тип – входная или выходная переменная, и интервал. Current Membership Function имеет следующие данные: Name – это название терма, type – тип функции принадлежности, в нашем случае trimf – треугольная, рагат – параметры.

На рисунке 9 изображена лингвистическая переменная Q_n – плотность пульпы. Треугольное нечеткое число для терма L $A = < 0,0,4,0,4 > \Delta$, для M $A = < 0,5,0,2,0,2 > \Delta$, для H $A = < 1,0,4,0,4 > \Delta$. Для остальных переменных данные вводятся идентично.

Выходные переменные имеют 5 термов: L – низкое, NL – не очень низкое, М – среднее, NH – не очень высокое, Н – высокое значения. На рисунке 10 изображено окно редактирования выходной переменной «п – частота

вращения импеллера». Числовые параметры каждого терма следующие: L – [-0.3 0 0.3], NL – [0.2 0.3 0.4], M – [0.3 0.5 0.7], NH – [0.6 0.7 0.8], H – [0.7 1 1.7]. Данные для осальных выходных переменных вводятся аналогично.

Рисунок 8 – Графический интерфейс «Fuzzy Logic Designer»

Для моделирования необходима база правил. Было создано 72 правил следующего вида со связкой нечеткая конъюнкция «И»:

К примеру, ПРАВИЛО 1: ЕСЛИ « $Q_{\pi} = L$ » И « $Q_x = L$ » И « $Q_{\kappa} = L$ » И «P=L» ТО «n=M», «d=M», «m=L».

ПРАВИЛО 2: ЕСЛИ « $Q_{\pi} = M$ » И « $Q_{x} = L$ » И « $Q_{\kappa} = L$ » И «P=L» ТО «n=M», «d=M», «m=M».

ПРАВИЛО 3: ЕСЛИ « $Q_{\pi} = L$ » И « $Q_{x} = M$ » И « $Q_{\kappa} = H$ » И «P=L» TO «n=L», «d=L», «m=L».

Все последующие правила созданы по тому же алгоритму в соответствии с матрицей полного факторного эксперимента. Графический интерфейс редактора правил изображен на рисунке 11.

File	Edit	View				
	FIS Var	iables	,	Membership f	unction plots	plot points: 181
X	X		1	/	^ \	H
		n d	0.5 -			
X	X			\mathbf{X}	\rangle	
X	P	m	0 0.1 0	2.2 0.3 0.4 0. input vari	5 0.6 0.7 able "Qn"	0.8 0.9 1
Curr	ent Vari	able		Current Membership Fund	tion (click on MF to	select)
Nam	e		Ωn	Name		
Туре	;		input	Туре		trimf
Rang	je		[0 1]	Params		
Disp	lay Ran	ge	[0 1]	Help		Close
Sele	cted var	riable "Qn"				

Рисунок 9 – Окно редактирования параметров входной лингвистической переменной «Q_п – плотность пульпы»

Рисунок 10 – Окно редактирования параметров выходной лингвистической переменной «п – частота вращения импеллера»

File	Edit	View	Options									
1. 2. 3.1 4.1 5.1 6. 7.1 8.1 9.1 10 111 12 13 14 15 16	f (Qn is 1 f (Qn is 1) f	L) and ((M) and ((L) and (L)	Dx is L) and Dx is L) and (Dx is M) and (Dx is L) and	d (Qris L) and (P is L) d (Qris L) (Qris L	hen (n is M)(d is then (n is M)(d i) then (n i M)(d i) then (n i M)(d i M)(d i) then (n i M)(d i M	M)(m is L) (1) M)(m is M) (1) L)(m is L) (1) NL)(m is L) (1) NH)(m is L) (1) NH)(m is L) (1) NH)(m is L) (1) M)(m is L) (1) S NL)(m is H) (1) S NL(m is H) (1) S NL(m is H) (1) S NL(m is H) (1) S NL(m is L) (1) S NL(m is L) (1))					
If				and		and		and		Then		and
		Qn is		Qxi	s	۵	k is		P is		n is	
L M H no	ne		\$	L M H none	~	L M H none	< v	L M H none	~	L M H NL NH none		M H NL NH
	not			not		🗌 not		🗌 not		🗌 not		
	Cor O or O and	nection		Weight:	Delet	te rule	Add rule		Change rule			>>
Re	ady								Help		Close	

Рисунок 11 – Графический интерфейс редактора правил

После определения правил нечеткой продукции, производится вывод результатов как показано на рисунках 12 и 13.

Рисунок 12 – Вид программы просмотра правил нечеткого вывода для значений входных переменных [0 0 0 0]

承 Rule View	wer: Centrifugal c	oncentrator			_		×
File Edit	View Options						
Qn = 0.7 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 14 13 14 15 16 17 18 9 20 14 15 16 17 18 9 20 14 15 22 23 24 24 25 26 14 27 28 9 30 14 22 23 24 24 25 26 14 27 28 9 30 14 30 14	Qx = 0.5						
Input: [0.7 0	0.5 0 0]	P	lot points: 101	Move:	left right	down u	q
Opened syst	em Centrifugal con	centrator, 72 ru	iles		Help	Close	

Рисунок 13 – Вид программы просмотра правил нечеткого вывода для значений входных переменных [0,7 0,5 0 0]

Далее после исследования нечеткого алгоритма все данные были экспортированные на рабочее пространство Matlab для дальнейшего оценивания адекватности полученной модели. Полные результаты работы сети указаны в приложении А.

3.3.2 Синтез интеллектуальных моделей с помощью нейронных сетей

3.3.2.1 Нейронные сети. Общие понятия

Искусственные нейронные сети повторяют модель человеческого мозга. Структура нейрона имеет следующие части: дендриты – входы, аксон – выход, сома – тело, синапсы, которые соединяют аксоны с дендритами других нейронов. При прохождении синапса сила импульса меняется в определенное число раз, которое принято называть весом синапса. Строение биологического нейрона показано на рисунке 14.

Принцип работы биологического нейрона заключается в следующем: к нейрону импульсы поступают по нескольким дендритам, в дальнейшем эти импульсы суммируются. При превышении импульсу определенного порога

нейрон начинает возбуждаться, появившиеся сигналы передаются по аксону. Математическая модель нейрона изображена на рисунке 15.

Рисунок 14 – Строение биологического нейрона

Рисунок 15 – Искусственный нейрон

Формула срабатывания нейрона:

$$O = F(\langle W^{T}, X \rangle) = F(\sum_{i=1}^{n} w_{i} \cdot x_{i}),$$

$$O = \begin{cases} 1, (\langle W^{T}, X \rangle) \ge 0, \\ 0, & \text{иначе.} \end{cases}$$
(15)

Нейронные сети – это математическая модель представляющую собой работу множества искусственных нейронов. Такая сеть проводит элементарные вычисления. Нет необходимости заранее программировать.

Если нечеткий алгоритм дает возможность принимать решения на основе каких-либо неточных данных, то нейронные сети повторяют применить мыслительный процесс в человеческом мозгу, моделирует сложные взаимосвязи между входными и выходными данными.

3.3.2.2 Нейронная сеть прямого распространения

Для создания интеллектуальной нейронной сети будет использована нейронная сеть прямого распространения. Входные сигналы последовательно проходят через все нейроны и передаются на выходы. Выходной сигнал определяется текущими входами и значениями весов.

Нейронная сеть прямого распространения отличается полносвязностью: слой нейронов производит независимое вычисление полученных данных и обрабатывает другому слою. Каждый нейрон передает независимые вычисления, зависящие от взвешенной суммы его входных данных. Это означает, что нет связей между нейронами одного слоя. Начальный слой - это входной слой, а последний слой - выходной слой, между этими двумя слоями имеется скрытый слой.

Для обучения нейронной сети применяется алгоритм обратного распространения ошибки (backpropagation) Левенберга – Марквардта.

Данный алгоритм представляет собой прямого и обратного проходов по всем имеющимся слоям. Прямой проход как описано выше подразумевают подачу на входной слой входного вектора и дальнейшего его распространения от слоя к слою. Все синаптические веса являются фиксированными. После чего генерируется набор выходных сигналов. Далее формируется сигнал ошибки – это разница между желаемым и фактическим выходами сети. В соответствии с настраиваются. ЭТИМ сигналом синаптические веса Сигнал ошибки распространяется ПО сети В направлении, обратном направлению синаптических связей. Возврат будет осуществляться пока не будет минимизирована ошибка.

Выходное значение j-го нейрона n-го слоя вычисляется по следующей формуле

$$Y_j^n = F(\sum w_{i,j}^n Y_j^{n-1} - b_j^n),$$
(16)

где Y_j^n – выходной вектор; $w_{i,j}^n$ – і-ый весовой коэффициент j-го нейрона n-го слоя;

 b_i^n – порог і-го нейрона n-го слоя.

Выходное значение і-го нейрона выходного слоя вычисляется по формуле

$$Y_j = F(\sum w_{i,j} Y_j^{n-1} - b_j).$$
(17)

Функционал ошибки сети

$$E = \frac{1}{2} \sum_{j} (Y_{j} - d_{j})^{2}, \qquad (18)$$

где d_i - эталонное выходное значение j-го нейрона.

Ошибка j-го элемента n- го скрытого слоя

$$\gamma_{j}^{n} = \frac{\partial E}{\partial Y_{j}} = \sum_{j} \frac{\partial E}{\partial Y_{j}} \frac{\partial Y_{j}}{\partial X_{j}} \frac{\partial X_{j}}{\partial Y_{j}^{n}} =$$
$$= \sum_{j} \frac{\partial E}{\partial Y_{j}} \frac{\partial Y_{j}}{\partial X_{j}} w_{i,j} = \sum_{j} (Y_{j} - d_{j}) F'(X_{j}) w_{i,j} = \sum_{j} \gamma_{j} F'(X) w_{i,j}$$
(19)

где $\gamma_j = Y_j - d_j$ – ошибка j-го нейрона выходного слоя;

X_i- входной вектор

Градиенты ошибок вычисляются по формулам:

$$\frac{\partial E}{\partial w_{i,j}} = \frac{\partial E}{\partial Y_j} \frac{\partial Y_j}{\partial X_j} \frac{\partial X_j}{\partial w_{i,j}} = \gamma_j F'(X_j) Y_j^n,$$

$$\frac{\partial E}{\partial b_j} = \frac{\partial E}{\partial Y_j} \frac{\partial Y_j}{\partial X_j} \frac{\partial X_j}{\partial b_j} = -\gamma_j F'(X_j),$$

$$\frac{\partial E}{\partial w_{i,j}^n} = \sum_j \frac{\partial E}{\partial Y_j} \frac{\partial Y_j}{\partial X_j} \frac{\partial X_j}{\partial Y_j^{n-1}} \frac{\partial Y_j^{n-1}}{\partial X_j^{n-1}} \frac{\partial X_j^{n-1}}{\partial w_{i,j}^n} = \gamma_j F'(X_j^n) Y_j^n.$$
(20)

Весовые коэффициенты и смещения нейронов [15]

$$w_{i,j}^{n}(t+1) = w_{i,j}^{n} - \alpha \gamma_{j} F'(X_{j}^{n}) Y_{j}^{n},$$

$$b_{j}^{n}(t+1) = b_{j}^{n} - \alpha \gamma_{j}^{n} F'(X_{j}^{n}).$$
 (21)

Существуют несколько видов функции активации. Функция активации предназначена для вычисления выходного сигнала нейронной сети. Назначения этих функции указаны в таблице 5.

Таблица 5 – Функции активации

Функция	Назначение						
hardlim	Возвращает 1, если на входе положительное число и 0 в						
	противном случае						
tansig	Вычисляет гиперболический тангенс от входа						
purelin	Вычисляет выход слоя от сетевого входа						

Создание искусственной нейронной сети производилось программе Matlab. Для запуска графического интерфейса NNTool выполняется команда:

>> nntool

Открывается окно управления сетями и данными как показано на рисунке 16, куда импортируются входные и выходные данные.

Согласно теореме Колмогорова число нейронов в скрытом слое меньше или равна 2i+1, где i – общее количество входных переменных. В данном случае i=4. Значит число нейронов скрытого слоя следует принять равным 8.

После нажатия кнопки «New Network» открывается окно создание сети, как показано на рисунке 17, в котором выбираются тип сети, входные и целевые данные, функция обучения и количество нейронов.

Trainlm – выполняет обучение многослойной нейронной сети методом Левенберга-Марквардта. Learngdm – функция изменения весов при обучении. Другими словами функция означает градиентный спуск с весом импульса и функцией изучения смещения.

📣 Neural Network/Data Manager (nntool)		– 🗆 ×
▶ Input Data: inputs	Vetworks	Output Data:
Target Data: outputs		K Error Data:
③ Input Delay States:		C Layer Delay States:
💲 Import 😤 New 🔲 Open.	😵 Export 🔉 Delete	U Help Close

Рисунок 16 – Окно управления сетями и данными NNTool

😤 Create Network or Data	- 🗆 X
Network Data	
Name	
Concentrator	
Network Properties	
Network Type:	eed-forward backprop V
Input data:	inputs \checkmark
Target data:	outputs ~
Training function:	TRAINLM \sim
Adaption learning function:	LEARNGDM $ \sim $
Performance function:	MSE 🗸
Number of layers:	2
Properties for: Layer 1 V	
Number of neurons: 8	
Transfer Function: TANSIG V	
	💙 View 🙀 Restore Defaults
Help	😤 Create 🛛 🙆 Close

Рисунок 17 – Окно создания сети

Предварительный просмотр сети показано на рисунке 18, а результаты обучения на рисунке 19.

Neural Network Training (nn	traintool)	_						
Neural Network								
Hidden Layer Unput 4 0utput Layer 0utput b b 4 0utput b 3 3								
Algorithms Data Division: Random (div Training: Levenberg-Ma Performance: Mean Squared Calculations: MEX	iderand) rquardt (trainlm) Error (mse)							
Epoch: 0	9 iterations		1000					
lime:	0:00:02							
Performance: 0.223	0.0397		0.00					
Gradient: 0.106	0.00117		1.00e-07					
Mu: 0.00100	1.00e-05		1.00e+10					
validation Checks: 0	U		0					
Plots								
Performance (plotper	form)							
Training State (plottrai	nstate)							
Regression (plotreg	ression)							
Plot Interval:		epochs						
Validation stop.	Stop Trainin	ıg (Cancel					

Рисунок 19 – Окно Neutral Network Training

Как показано на рисунке 19 для выполнения обучения потребовалось 9 итерации. Значение ошибки так же допустимое. Прогресс обучения изображен на рисунке 20.

Рисунок 20 – Прогресс обучения нейронной сети

Полные результаты работы сети указаны в приложении Б.

3.3.2.2 Радиально-базисная нейронная сеть

Радиально-базисная нейронная сеть – это частный случай нейронных сетей прямого распространения и является универсальным аппроксиматором. Сеть имеет два слоя: первый, состоящий из радиальных нейронов, второй – один или несколько линейных нейронов. Веса радиального слоя равны единице. Функция активации *i*-ого радиального нейрона имеет вид:

$$f_i(X) = \varphi(||X - C_i||), \qquad (22)$$

где *C_i* – вектор центра радиально-базисной функции нейрона.

Входной вектор и вектор центра имеют одинаковую размерность: X, C $\in \mathbb{R}^{n}$.

В качестве функции активации скрытых слоев выступает функция типа Гаусса определяемая формулой

$$\varphi(\left|\left|X-C_{i}\right|\right|) = \exp\left(-\frac{\left|\left|X-C_{i}\right|\right|^{2}}{2\sigma_{i}^{2}}\right),$$
(23)

где *σ* – ширина «окна» активационной функции.

Как правило, значение *σ* делают чуть большим расстояния между центрами соответствующих базисных функций.

Функция типа Гаусса изображена на рисунке 21. Отклик функции монотонно уменьшается или увеличивается с удалением от центра.

Рисунок 21 – Функция Гаусса

В соответствии с [16,17] аппроксимация выполняется по формуле

$$y = \sum_{i=1}^{L} w_i \varphi_i (||X - C_i||).$$
(24)

При обучении значения L, C_i, w_i подбираются таким образом, что достигается минимум целевой функции

$$E = \frac{1}{2} \sum_{k=1}^{p} \left(\sum_{i=1}^{L} w_i \varphi_i \left(\left| \left| X^k - C_i \right| \right| \right) - d^k \right)^2, \quad (25)$$

где *p* – это количество обучающих выборок.

Структурная схема с радиально-базисными нейронами и одним выходным нейроном показана на рисунке 22.

В отличие от других нейронных сетей у сетей с алгоритмом обратного распространения в радиально-базисных сетях проблемы локальных минимумов устранены. Имеет высокую скорость обучения. Создание радиально-базисной нейронной сети представлена ниже.

Рисунок 22 – Структурная схема радиально-базисной сети

>> P=inputs; % определение обучающих данных на входе
>> T=outputs; % определение обучающих данных на выходе
>> GOAL=0.005; % допустимый предел ошибки при обучении
>> SPREAD=1; % ширина «окна» функции
>> net=newrb(P,T,GOAL,SPREAD); % создание сети
NEWRB, neurons = 0, MSE = 0.0577924
NEWRB, neurons = 50, MSE = 0.0453073

Рисунок 23 – Прогресс обучения нейронной сети

>> Y=sim(net,P) % моделирование работы сети >> net.layers{1}.size % количество радиальных нейронов ans = 72 Полные результаты моделирования указаны в приложении В.

3.3.2 Синтез интеллектуальных моделей с помощью гибридных сетей

Гибридная сеть совмещает в себе обучающие возможности нейронной сети с устойчивостью систем нечеткой логики. В Matlab для моделирования гибридных сетей используется адаптивная система нейро-нечеткого вывода ANFIS. ANFIS является аббревиатурой Adaptive Neuro-Fuzzy Inference System – адаптивная нейро-нечеткая система. Текущая нейронная сеть имеет несколько входов и только один выход представленных в виде лингвистических переменных.

Выходной сигнал сети Такаги-Сугено-Канга [18] расчитывает по формуле

$$y(X) = \frac{\sum_{i=1}^{M} w_i y_i(X)}{\sum_{i=1}^{M} w_i},$$

$$y_i(X) = p_{i0} + \sum_{j=1}^{N} p_{ij} x_j,$$
 (26)

где *y_i*(*X*) – *i* -ый полиномиальный компонент аппроксимации. Функция активации – рациональная форма функции Гаусса. Весовые коэффициенты рассчитываются по формуле:

$$w_{i} = \prod_{j=1}^{N} w_{ij}(x_{j}) = \prod_{j=1}^{N} \frac{1}{1 + \left(\frac{|x_{j} - c_{ij}|}{\sigma_{ij}}\right)^{2b_{ij}}}.$$
 (27)

Структура сети представлена на рисунке 24.

Сеть изображенная на рисунке 24 имеет пять слоев. Первый слой – параметрический, в нем изменяются параметры $c_{ij}, \sigma_{ij}, b_{ij}$. Второй слой предназначен для агрегирования левых частей сети. Генерация полиномиальных компонентов агрегирования производится в третьем слою. Здесь же эти компоненты умножаются на весовые коэффициенты.

Количество коэффициентов p_{ij} эквивалентно $M \times (N + 1)$. При этом i = 1,2,3, ..., M, j = 0,1,2, ..., N.

Четвертый слой состоит из двух нейронных сумматоров. Первый, из которых предназначен для нахождения суммы выходных сигналов, а второй сумму весовых коэффициентов. Последний пятый слой предназначен для нормализации весовых коэффициентов.

Первый и третий слои являются параметрическими, так как в них имеется возможность изменять параметры сети [19].

Рисунок 24 – Структурная схема сети Такаги-Сугено-Канга

Для работы в редакторе ANFIS в программе Matlab необходимо выполнить команду:

>> anfisedit

После открытия окна редактирования, нажав на кнопку «Load Data» выполняется импорт данных. Окно редактора после загрузки обучающих данных показано на рисунке 25. В данном случае рассматривается выходная переменная «Частота вращения импеллера». Для остальных переменных операции выполняются аналогично.

Neuro-Fuzzy Designer: Untitled	– 🗆 ×
File Edit View	
Training Data (ooo)	ANFIS Info.
	# of inputs: 4 # of outputs: 1 # of input mfs: 3 3 3 3 # of train data pairs: 72
0.2 0 10 20 30 40 50 60 70 80 data set index	Clear Plot
Load data Generate FIS Train FIS Optim. Method:	Test FIS
● Training ○ Load from file hybrid ● Training ○ Load from worksp. ○ Error Tolerance: ○ Checking ● worksp. ○ Grid partition ○ Demo Sub. clustering 3 □ Load Data Generate FIS Train Now	Plot against: Training data Testing data Checking data <u>Test Now</u>
train data loaded Help	Close

Рисунок 25 – Редактор ANFIS после загрузки обучающих данных

Следующим шагом служит выбор чисел и функции принадлежности

термов входных переменных. Для этого необходимо нажать кнопку «Generate FIS». Диалоговое окно изображено на рисунке 26. Тип функции принадлежности треугольный, а количество термов для входных переменных равно 3. Архитектуру сети можно увидеть на рисунке 27.

	- 0	×
		_
Number of MFs:	MF Type:	
3 3 3 3 To assign a different number of MFs to each input, use spaces to separate these numbers.	trimf trapmf gbellmf gaussmf gauss2mf pimf dsigmf psigmf	
MF Type:	constant ∧ linear ∨	
		_
ОК	Cancel	

Рисунок 26 – Диалоговое окно для указания количества и типа функции принадлежности

Рисунок 27 – Структура гибридной сети

На рисунке 28 показан график зависимости ошибок от количества циклов обучения. Графический интерфейс редактора FIS изображен на рисунке 29.

На рисунке 30 показана лингвистическая переменная «Q_п – Плотность пульпы». Термы и функции принадлежности для остальных входных переменных идентичны первому. Результаты работы сети представлены на рисунке 31.

Рисунок 31 – Результаты гибридной сети

Полные результаты работы гибридной сети указаны в приложении Г. В гибридной сети в качестве нечеткого алгоритма используется Сугено, в

то время как в нечеткой модели применена система типа Мамдани. Отличаются тем, что выходы системы типа Сугено – это вещественные числа, а в Мамдани – лингвистические значения нечетких переменных. Полное сравнение сетей указано в таблице 6.

Мамдани	Сугено				
Присутствует выходная функция	Отсутствует выходная функция				
принадлежности	принадлежности				
Выход поверхности прерывистый	Выход поверхности непрерывный				
Путем дефаззификации правил	Здесь нет дефаззификации. Используя				
получается четкий результат	средневзвешенное значение правил				
	последовательного получения четкого				
	результата				
Mamdani FIS обладает меньшей	Sugeno FIS обладает большей гибкостью				
гибкостью в конструкции системы	при проектировании системы				
Используется в системах MISO	Используется только в системах MISO				
(несколько входов и один выход) и	(Multiple Input and Single Output)				
МІМО (несколько входов и					
несколько выходов)					
Система логического вывода	Система логического вывода Sugeno				
Мамдани хорошо подходит для	хорошо подходит для математического				
человеческого ввода	анализа				

4 Оценка адекватности интеллектуальных моделей управления центробежным концентратором

Под понятием оценки адекватности понимается степень соответствия модели реальной системе. Полного совпадения реальной системы и ее модели не удастся. Поэтому принимается определенная требуемая степень совпадения.

Оценка адекватности является последним этапом разработки модели, которая имеет две цели. Первая – проверка соответствия целям исследования, а вторая – оценка достоверности результатов экспериментов.

Для оценки адекватности интеллектуальных систем применены следующие критерии:

1) Среднеквадратичная ошибка (Root Mean Square Error);

2) Средняя абсолютная ошибка (Mean absolute percentage error);

3) Корреляция экспертных и модельных значений (R).

После проведения всех экспериментов и создания нейронные, нечетких и гибридных сетей, результаты моделирования были экспортированы.

Средняя абсолютная ошибка вычисляется по формуле

$$MAPE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$
(28)

где *n* – количество вычисляемых значений;

 y_i – i-тое значение экспертных данных;

 \hat{y}_i – i-тое значение данных, полученных в результате моделирования. Формула среднеквадратичной ошибки:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$
(29)

Коэффициент корреляции между экспертными и экспериментальными значениями выходных величин определяется формулой

$$R = \frac{\sum_{i=1}^{m} (y_i - y_{cp}) (\hat{y}_i - \hat{y}_{cp})}{\sqrt{\sum_{i=1}^{m} (y_i - y_{cp})^2 \sum_{i=1}^{m} (\hat{y}_i - \hat{y}_{cp})^2}}$$
(30)

где у_{ср} – среднее значение экспертных данных;

 \hat{y}_{cp} – среднее значение данных, полученных в результате моделирования.

Коэффициент корреляции Пирсона часто используется в статистике и показывает степень взаимосвязи двух переменных. С помощью него определяется сила линейной зависимости между выбранными величинами. Значение коэффициент варьируется от -1 до +1 в зависимости от того, корреляция отрицательная или положительная.

Применяя формулы и таблицы в приложениях определим адекватность созданных интеллектуальных систем управления центробежным концентратором. Результаты расчетов указаны в таблице 7.

		Нечеткий	Нейронная	Радиально-	Гибридная
		алгоритм	сеть	базисная	сеть
			прямого	нейронная	
			распростра	сеть	
			нения		
R	Частота				
	вращения				
	импеллера n, Гц	0,90345	0,94415	0,95932	0,99693
	Ширина				
	открытия				
	форсунок d, мм	0,90286	0,94569	0,92671	0,99407
	Степень				
	открытия клапана				
	m, %	0,91180	0,91754	0,97396	0,98943
MAPE	Частота				
	вращения				
	импеллера n, Гц	2,78704	0,39108	0,00492	0,11349
	Ширина				
	открытия				
	форсунок d, мм	0,69973	0,22004	0,02440	0,06940
	Степень				
	открытия клапана				
	m, %	4,64661	0,96969	-0,10600	0,00376
RMSE	Частота				
	вращения				
	импеллера n, Гц	0,08684	0,06057	0,04942	0,01383
	Ширина				
	открытия				
	форсунок d, мм	0,07305	0,05297	0,06103	0,01768
	Степень				
	открытия клапана				
	m, %	0,14850	0,13655	0,07736	0,05032

Таблица 7 – Адекватность интеллектуальных систем

По результатам анализа согласно таблице 7 лучшие показатели имеет гибридная сеть. Корреляции экспертных значений для выходных переменных указаны на рисунках 32-34.

Рисунок 32 – Корреляция экспертных значений частоты вращения импеллера

Рисунок 33 – Корреляция экспертных значений ширины открытия форсунок

Рисунок 34 – Корреляция экспертных значений степени открытия клапана

Согласно таблице 7 по имеющимся данным корреляция положительная.

ЗАКЛЮЧЕНИЕ

В данной дипломной работе была исследована работа центробежного концентратора при гравитационном обогащении. Описан принцип работы концентратора и полный процесс обогащения. Целью работы являлось создание эффективной интеллектуальной системы управления. Процессы для обучения проводились в концентраторе Falcon C1000. Были выполнены все поставленные задачи. В ходе исследования проведен анализ математической модели движения частиц в центробежном концентраторе. Определены ключевые переменные. По матрице полного факторного эксперимента были синтезированы интеллектуальные модели с помощью нечеткой логики, нейронных сетей прямого и радиального распространения, гибридной сети. Все углубленно моделирования были изучены. Моделирование метолы производилось в системе Matlab. Этапы эксперимента представлены наглядно.

Способы создания интеллектуальной системы управления были сравнены между собой. После моделирования проводился анализ адекватности модели по трем показателям: среднеквадратичная ошибка, средняя абсолютная ошибка, также корреляция экспертных и модельных значений. По итогам исследования все модели показали хорошие результаты и приемлемые отклонения. Относительно низкие показатели имеются у нечеткого алгоритма. А наилучшие показатели были у гибридной сети. Корреляция у гибридной сети является положительной и имеет высокие значения. Среднеквадратичная и средняя абсолютная ошибки имеют наименьшие значения по сравнению с другими, что доказывает точность модели. Таким образом, можно заключить, что с помощью гибридной можно добиться эффективной сети системы управления центробежным концентратором.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1 Forbes Kazakhstan, 2015 электронная версия на сайте https://forbes.kz/stats/ostatochnyie_yavleniya.

2 Азимов О.А., Саидахметов А.А. Учебно-методический комлекс. – Навои, 2020. – 286 с.

3 Обогащение хрома на научной основе // https://www.vnedra.ru/specproekt/obogashhenie-hroma-na-nauchnoj-osnove-7505/.

4 Сагиндиков Актюбинская область: ставка на инновации // Казахстан. – 2006, №2 // http://investkz.com/journals/47.html.

5 Виды продукции предприятий группы ERG // https://www.erg.kz/ru/content/deyatel-nost/vidy-produkcii-predpriyatiy-gruppy.

6 Александров Т.Н., Кусков В.Б., Львов В.В., Николаев Н.В. Обогащение полезных ископаемых. – СПб.: Национальный минерально-сырьевой университет «Горный», 2015. – 528 с.

7 Концентраторы Falcon C // <u>http://www.iconcentrator.ru/koncentratory-falcon-c/</u>.

8 Бочаров, В.А. Сравнительный анализ процессов гравитационного разделения золото-содержащих продуктов в концентраторах Knelson и Falcon / В.А. Бочаров, В.А. Гуриков, В.В. Гуриков // Научные основы и прогрессивные технологии переработки труднообогатимых руд и техногенного сырья благородных металлов (Плаксинские чтения): труды Междунар. Совещания, 8-12 октября 2001 г. – Екатеринбург: Изд-во АМБ, 2001. – С. 93-95.

9 Кизевальтер, Б.В. Теоретические основы гравитационных методов обогащения /Б.В. Кизевальтер. – М.: Недра, 1979. – 295 с.

10 Маньков, В.М. Применение центробежно-гравитационного метода для извлечения мелкого золота из россыпей / В.М. Маньков, Т.Б. Тарасова // Обогащение руд. – 1999. – № 6. – С. 3-8.

11 Косой, Г.М. Динамика движения твёрдых частиц во вращающихся турбулентных по токах / Г.М. Косой, В.В. Сапешко // Теорет. основы хим. технологии. – 1980. – Т. 14. – № 3. – С. 452-458.

12 Косой, Г.М. Теоретические основы разделения минеральных суспензий в закрученных турбулентных потоках и интенсификация технологических процессов в гидро- и турбоциклонах: автореф. дисс. д-ра техн. наук: 05.15.08 / Косой Григорий Матвеевич. – Днепропетровск, 1990. – 38 с.

13 Шохин, В.Н. Гравитационные методы обогащения. Учебник для ВУЗов. 2-е изд., перераб. и доп. / В.Н. Шохин, А.Г. Лопатин. – М.: Недра, 1993. – 350 с.

14 B A Suleimenov, Ye. Kulakova Intelligent subsystem for determining the optimum pulsation frequency of a jigging machine // The 16th International Scientific Conference "Information Technologies and Management". – 2018. – Vol.1– C. 49-50.

15 Гафаров Ф.М. Искусственные нейронные сети и приложения: учеб. пособие / Ф.М. Гафаров, А.Ф. Галимянов. – Казань: Изд-во Казан. ун-та, 2018. – 121 с.

16 Круглов, В.В. Искусственные нейронные сети. Теория и практика / В.В. Круглов, В.В. Борисов. – М.: Горячая линия-Телеком, 2002. – 382 с.

17 Хайкин, С. Нейронные сети: полный курс, 2-е издание: Пер. с англ. / С. Хайкин. – М.: Вильямс, 2006. – 1104 с.

18 Б.А. Сулейменов, Ж.Ж. Омирбекова, А.Б. Сулейменов, Интеллектуальные системы управления технологическими процессами: Алматы, Шикула, 2017.

19 Осовский, С. Нейронные сети для обработки информации / С. Осовский. – М.: Финансы и статистика, 2002. – 344 с.

20 Концентраторы «Фалкон» модель С1000. Инструкция по установке и эксплуатации.

ПРИЛОЖЕНИЕ А

Таблица A1 – Результаты моделирования с помощью нечеткого алгоритма

Входные данные			Экспертные значения			Нечеткий алгоритм			
Q ₁₁ , %	Q _{xb} , %	Q _к , %	Р	n, Гц	d, мм	m, %	n, Гц	d, мм	m, %
1	2	3	4	5	6	7	8	9	10
0,00	0,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,10
0,50	0,00	0,00	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,50	0,00	0,00	0,9	0,20	0	0,90	0,20	0,10
0,00	0,00	0,50	0,00	0,6	0,3	0,1	0,50	0,30	0,10
0,00	0,00	0,00	0,50	0,5	0,5	0,3	0,50	0,50	0,30
1,00	0,00	0,00	0,00	0,8	0,7	0,3	0,90	0,70	0,30
0,00	1,00	0,00	0,00	0,4	0,6	0,1	0,50	0,70	0,10
0,00	0,00	1,00	0,00	0,5	0,5	0	0,50	0,50	0,10
0,00	0,00	0,00	1,00	0,3	0,3	0,8	0,30	0,30	0,90
0,50	1,00	0,00	0,00	0,4	0,2	0,5	0,50	0,20	0,50
1,00	0,50	0,00	0,00	0,8	0,5	1	0,90	0,50	0,90
0,00	1,00	0,50	0,00	0,55	0,3	0,1	0,90	0,70	0,10
0,00	0,00	1,00	0,50	0,5	0,5	0,5	0,50	0,50	0,50
1,00	1,00	0,00	0,00	0,9	0,2	0	0,90	0,10	0,10
0,00	1,00	0,50	1,00	0,5	0,4	0,7	0,50	0,40	0,70
0,00	0,00	1,00	1,00	0,3	0,4	0,8	0,30	0,40	0,70
0,00	0,00	0,00	1,00	0,50	0,70	0	0,50	0,70	0,10
0,50	0,00	0,00	0,00	0,50	0,70	0	0,50	0,70	0,50
0,00	0,50	0,00	0,00	0,5	0,5	0	0,50	0,50	0,10
0,00	0,00	0,50	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,00	0,00	0,50	0,9	0,20	0	0,90	0,20	0,10
0,10	0,00	0,00	0,00	0,6	0,3	0,1	0,50	0,30	0,10
0,00	1,00	0,00	0,00	0,5	0,5	0,3	0,50	0,50	0,30
0,00	0,00	1,00	0,00	0,8	0,7	0,3	0,90	0,70	0,30
0,00	0,00	0,00	1,00	0,4	0,6	0,1	0,50	0,60	0,10
0,50	1,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,10

Продолжение таблицы А1

1	2	3	4	5	6	7	8	9	10
1	0,5	0	0	0,3	0,3	0,8	0,30	0,30	0,90
0,00	1,00	0,50	0,00	0,4	0,2	0,5	0,50	0,20	0,50
0,00	0,00	1,00	0,50	0,8	0,5	1	0,90	0,50	0,90
1,00	1,00	0,00	0,00	0,55	0,3	0,1	0,50	0,30	0,10
0,00	1,00	0,50	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,00	0,00	1,00	0,5	0,5	0,3	0,50	0,50	0,30
0,50	1,00	0,00	0,00	0,8	0,7	0,3	0,90	0,70	0,30
1,00	0,50	0,00	0,00	0,4	0,6	0,1	0,50	0,50	0,10
0,00	1,00	0,50	0,00	0,5	0,5	0	0,50	0,50	0,10
0,00	0,00	1,00	0,50	0,3	0,3	0,8	0,30	0,30	0,90
1,00	1,00	0,00	0,00	0,4	0,2	0,5	0,50	0,30	0,50
0,00	1,00	0,50	0,00	0,8	0,5	1	0,90	0,50	0,90
0,00	0,00	0,10	0,00	0,55	0,3	0,1	0,50	0,30	0,50
0,00	0,00	0,00	1,00	0,5	0,5	0,5	0,50	0,50	0,50
0,50	0,00	0,00	0,00	0,9	0,2	0	0,90	0,30	0,10
0,00	0,50	0,00	0,00	0,5	0,4	0,7	0,50	0,50	0,70
0,00	0,00	0,50	0,00	0,3	0,4	0,8	0,30	0,50	0,70
0,00	0,00	0,00	0,50	0,50	0,70	0	0,50	0,70	0,10
0,10	0,00	0,00	0,00	0,50	0,70	0	0,50	0,50	0,50
0,00	1,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,50
0,00	0,00	1,00	0,00	0,5	0,5	0,5	0,90	0,50	0,30
0,00	0,00	0,00	1,00	0,9	0,20	0	0,90	0,26	0,10
0,50	1,00	0,00	0,00	0,6	0,3	0,1	0,50	0,29	0,10
1,00	0,50	0,00	0,00	0,5	0,5	0,3	0,50	0,49	0,30
0,00	1,00	0,50	0,00	0,8	0,7	0,3	0,70	0,70	0,30
0,00	0,00	1,00	0,50	0,4	0,6	0,1	0,50	0,61	0,10
1,00	1,00	0,00	0,00	0,5	0,5	0	0,50	0,53	0,10
0,00	1,00	0,50	0,00	0,3	0,3	0,8	0,30	0,30	0,90
0,00	0,00	0,10	0,00	0,4	0,2	0,5	0,50	0,20	0,50
0,00	0,00	0,00	1,00	0,8	0,5	1	0,90	0,50	0,90
0,50	0,00	0,00	0,00	0,55	0,3	0,1	0,50	0,35	0,10

1	2	3	4	5	6	7	8	9	10
0,00	0,50	0,00	0,00	0,5	0,5	0,5	0,50	0,53	0,50
0,00	0,00	0,50	0,00	0,9	0,2	0	0,90	0,23	0,10
0,00	0,00	0,00	0,50	0,5	0,4	0,7	0,50	0,43	0,70
0,10	0,00	0,00	0,00	0,3	0,4	0,8	0,50	0,29	0,50
0,00	1,00	0,00	0,00	0,50	0,70	0	0,50	0,70	0,10
0,00	0,00	1,00	0,00	0,50	0,70	0	0,50	0,70	0,10
0,00	0,00	0,00	1,00	0,8	0,5	1	0,90	0,50	0,90
0,50	1,00	0,00	0,00	0,55	0,3	0,1	0,50	0,30	0,10
1,00	0,50	0,00	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	1,00	0,50	0,00	0,9	0,2	0	0,90	0,10	0,10
0,00	0,00	1,00	0,50	0,5	0,4	0,7	0,50	0,40	0,70
1,00	1,00	0,00	0,00	0,3	0,4	0,8	0,30	0,40	0,90
0,00	1,00	0,50	0,00	0,50	0,70	0	0,50	0,90	0,10
0,00	0,00	0,10	0,00	0,50	0,70	0	0,50	0,50	0,50
0,00	0,00	0,00	1,00	0,70	0,30	1	0,70	0,30	0,90

Продолжение таблицы А1

ПРИЛОЖЕНИЕ Б

Таблица	Б1	—	Результаты	моделирования	нейронной	сети	прямого
распространени	1Я						

B	ходные	данные	e	Экспе	ртные з	начения	Нейронная сеть прямого распространение			
Q ₁₁ , %	Q _{xb} , %	Q _K , %	Р	n, Гц	d, мм	m, %	n, Гц	d, мм	m, %	
1	2	3	4	5	6	7	8	9	10	
0,00	0,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,12	
0,50	0,00	0,00	0,00	0,5	0,5	0,5	0,55	0,50	0,47	
0,00	0,50	0,00	0,00	0,9	0,20	0	0,90	0,12	0,02	
0,00	0,00	0,50	0,00	0,6	0,3	0,1	0,60	0,56	0,10	
0,00	0,00	0,00	0,50	0,5	0,5	0,3	0,50	0,50	0,30	
1,00	0,00	0,00	0,00	0,8	0,7	0,3	0,80	0,68	0,30	
0,00	1,00	0,00	0,00	0,4	0,6	0,1	0,40	0,55	0,10	
0,00	0,00	1,00	0,00	0,5	0,5	0	0,50	0,55	0,00	
0,00	0,00	0,00	1,00	0,3	0,3	0,8	0,30	0,22	0,80	
0,50	1,00	0,00	0,00	0,4	0,2	0,5	0,40	0,22	0,50	
1,00	0,50	0,00	0,00	0,8	0,5	1	0,70	0,55	1,00	
0,00	1,00	0,50	0,00	0,55	0,3	0,1	0,55	0,30	0,10	
0,00	0,00	1,00	0,50	0,5	0,5	0,5	0,50	0,50	0,50	
1,00	1,00	0,00	0,00	0,9	0,2	0	0,80	0,20	0,00	
0,00	1,00	0,50	1,00	0,5	0,4	0,7	0,55	0,40	0,70	
0,00	0,00	1,00	1,00	0,3	0,4	0,8	0,30	0,40	0,80	
0,00	0,00	0,00	1,00	0,50	0,70	0	0,55	0,68	0,00	
0,50	0,00	0,00	0,00	0,50	0,70	0	0,55	0,68	0,00	
0,00	0,50	0,00	0,00	0,5	0,5	0	0,55	0,50	0,12	
0,00	0,00	0,50	0,00	0,5	0,5	0,5	0,50	0,50	0,50	
0,00	0,00	0,00	0,50	0,9	0,20	0	0,89	0,12	0,12	
0,10	0,00	0,00	0,00	0,6	0,3	0,1	0,62	0,30	0,12	
0,00	1,00	0,00	0,00	0,5	0,5	0,3	0,55	0,50	0,30	
0,00	0,00	1,00	0,00	0,8	0,7	0,3	0,79	0,70	0,30	
0,00	0,00	0,00	1,00	0,4	0,6	0,1	0,45	0,60	0,12	

Продолжение таблицы Б1

1	2	3	4	5	6	7	8	9	10
0,50	1,00	0,00	0,00	0,5	0,5	0	0,55	0,50	0,12
1	0,5	0	0	0,3	0,3	0,8	0,32	0,30	0,88
0,00	1,00	0,50	0,00	0,4	0,2	0,5	0,38	0,20	0,55
0,00	0,00	1,00	0,50	0,8	0,5	1	0,88	0,50	0,97
1,00	1,00	0,00	0,00	0,55	0,3	0,1	0,58	0,30	0,12
0,00	1,00	0,50	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,00	0,00	1,00	0,5	0,5	0,3	0,50	0,50	0,30
0,50	1,00	0,00	0,00	0,8	0,7	0,3	0,75	0,70	0,30
1,00	0,50	0,00	0,00	0,4	0,6	0,1	0,40	0,60	0,12
0,00	1,00	0,50	0,00	0,5	0,5	0	0,55	0,50	0,12
0,00	0,00	1,00	0,50	0,3	0,3	0,8	0,30	0,30	0,78
1,00	1,00	0,00	0,00	0,4	0,2	0,5	0,40	0,20	0,55
0,00	1,00	0,50	0,00	0,8	0,5	1	0,80	0,40	1,00
0,00	0,00	0,10	0,00	0,55	0,3	0,1	0,55	0,40	0,10
0,00	0,00	0,00	1,00	0,5	0,5	0,5	0,55	0,55	0,50
0,50	0,00	0,00	0,00	0,9	0,2	0	0,68	0,20	0,00
0,00	0,50	0,00	0,00	0,5	0,4	0,7	0,55	0,40	0,70
0,00	0,00	0,50	0,00	0,3	0,4	0,8	0,37	0,40	0,80
0,00	0,00	0,00	0,50	0,50	0,70	0	0,50	0,70	-0,01
0,10	0,00	0,00	0,00	0,50	0,70	0	0,50	0,70	0,01
0,00	1,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,00
0,00	0,00	1,00	0,00	0,5	0,5	0,5	0,50	0,50	0,01
0,00	0,00	0,00	1,00	0,9	0,20	0	0,68	0,26	0,00
0,50	1,00	0,00	0,00	0,6	0,3	0,1	0,55	0,33	0,08
1,00	0,50	0,00	0,00	0,5	0,5	0,3	0,50	0,51	0,24
0,00	1,00	0,50	0,00	0,8	0,7	0,3	0,63	0,61	0,02
0,00	0,00	1,00	0,50	0,4	0,6	0,1	0,40	0,61	0,01
1,00	1,00	0,00	0,00	0,5	0,5	0	0,54	0,53	0,42
0,00	1,00	0,50	0,00	0,3	0,3	0,8	0,30	0,30	0,80
0,00	0,00	0,10	0,00	0,4	0,2	0,5	0,40	0,20	0,50
0,00	0,00	0,00	1,00	0,8	0,5	1	0,80	0,50	1,00

1	2	3	4	5	6	7	8	9	10
0,50	0,00	0,00	0,00	0,55	0,3	0,1	0,53	0,35	0,15
0,00	0,50	0,00	0,00	0,5	0,5	0,5	0,50	0,53	0,33
0,00	0,00	0,50	0,00	0,9	0,2	0	0,68	0,23	0,14
0,00	0,00	0,00	0,50	0,5	0,4	0,7	0,50	0,43	0,76
0,10	0,00	0,00	0,00	0,3	0,4	0,8	0,32	0,29	0,31
0,00	1,00	0,00	0,00	0,50	0,70	0	0,50	0,61	0,20
0,00	0,00	1,00	0,00	0,50	0,70	0	0,50	0,58	0,05
0,00	0,00	0,00	1,00	0,8	0,5	1	0,78	0,54	0,98
0,50	1,00	0,00	0,00	0,55	0,3	0,1	0,55	0,41	0,12
1,00	0,50	0,00	0,00	0,5	0,5	0,5	0,55	0,44	0,24
0,00	1,00	0,50	0,00	0,9	0,2	0	0,80	0,22	0,04
0,00	0,00	1,00	0,50	0,5	0,4	0,7	0,50	0,51	0,12
1,00	1,00	0,00	0,00	0,3	0,4	0,8	0,35	0,38	0,80
0,00	1,00	0,50	0,00	0,50	0,70	0	0,55	0,70	0,00
0,00	0,00	0,10	0,00	0,50	0,70	0	0,55	0,70	0,00
0,00	0,00	0,00	1,00	0,70	0,30	1	0,70	0,30	1,00

Продолжение таблицы Б1

ПРИЛОЖЕНИЕ В

Таблица В1 – Результаты моделирования радиально-базисной нейронной сети

В	ходные	данные		Экспе	ртные зн	ачения	Радиально-базисная нейронная сеть			
Q ₁₁ , %	Q _{xb} , %	Q _к , %	Р	n, Гц	d, мм	m, %	n, Гц	d, мм	m, %	
1	2	3	4	5	6	7	8	9	10	
0,00	0,00	0,00	0,00	0,5	0,5	0	0,53	0,56	-0,07	
0,50	0,00	0,00	0,00	0,5	0,5	0,5	0,44	0,49	0,57	
0,00	0,50	0,00	0,00	0,9	0,20	0	0,90	0,20	0,00	
0,00	0,00	0,50	0,00	0,6	0,3	0,1	0,61	0,27	0,08	
0,00	0,00	0,00	0,50	0,5	0,5	0,3	0,48	0,46	0,40	
1,00	0,00	0,00	0,00	0,8	0,7	0,3	0,83	0,71	0,26	
0,00	1,00	0,00	0,00	0,4	0,6	0,1	0,40	0,51	0,12	
0,00	0,00	1,00	0,00	0,5	0,5	0	0,53	0,47	0,01	
0,00	0,00	0,00	1,00	0,3	0,3	0,8	0,31	0,32	0,75	
0,50	1,00	0,00	0,00	0,4	0,2	0,5	0,52	0,23	0,37	
1,00	0,50	0,00	0,00	0,8	0,5	1	0,80	0,50	1,00	
0,00	1,00	0,50	0,00	0,55	0,3	0,1	0,47	0,39	0,18	
0,00	0,00	1,00	0,50	0,5	0,5	0,5	0,48	0,53	0,46	
1,00	1,00	0,00	0,00	0,9	0,2	0	0,83	0,19	0,07	
0,00	1,00	0,50	1,00	0,5	0,4	0,7	0,52	0,38	0,69	
0,00	0,00	1,00	1,00	0,3	0,4	0,8	0,30	0,39	0,83	
0,00	0,00	0,00	1,00	0,50	0,70	0	0,50	0,69	0,08	
0,50	0,00	0,00	0,00	0,50	0,70	0	0,55	0,53	0,05	
0,00	0,50	0,00	0,00	0,5	0,5	0	0,57	0,47	0,04	
0,00	0,00	0,50	0,00	0,5	0,5	0,5	0,52	0,50	0,46	
0,00	0,00	0,00	0,50	0,9	0,20	0	0,82	0,18	0,06	
0,10	0,00	0,00	0,00	0,6	0,3	0,1	0,66	0,45	-0,01	
0,00	1,00	0,00	0,00	0,5	0,5	0,3	0,50	0,47	0,09	
0,00	0,00	1,00	0,00	0,8	0,7	0,3	0,63	0,65	0,46	
0,00	0,00	0,00	1,00	0,4	0,6	0,1	0,43	0,61	0,08	

Продолжение таблицы В1

1	2	3	4	5	6	7	8	9	10
0,50	1,00	0,00	0,00	0,5	0,5	0	0,52	0,43	0,06
1	0,5	0	0	0,3	0,3	0,8	0,32	0,25	0,75
0,00	1,00	0,50	0,00	0,4	0,2	0,5	0,38	0,23	0,58
0,00	0,00	1,00	0,50	0,8	0,5	1	0,88	0,52	0,93
1,00	1,00	0,00	0,00	0,55	0,3	0,1	0,46	0,50	0,17
0,00	1,00	0,50	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,00	0,00	1,00	0,5	0,5	0,3	0,50	0,50	0,30
0,50	1,00	0,00	0,00	0,8	0,7	0,3	0,80	0,67	0,31
1,00	0,50	0,00	0,00	0,4	0,6	0,1	0,39	0,42	0,17
0,00	1,00	0,50	0,00	0,5	0,5	0	0,51	0,61	-0,04
0,00	0,00	1,00	0,50	0,3	0,3	0,8	0,30	0,30	0,80
1,00	1,00	0,00	0,00	0,4	0,2	0,5	0,40	0,30	0,46
0,00	1,00	0,50	0,00	0,8	0,5	1	0,80	0,50	1,00
0,00	0,00	0,10	0,00	0,55	0,3	0,1	0,55	0,30	0,10
0,00	0,00	0,00	1,00	0,5	0,5	0,5	0,50	0,50	0,50
0,50	0,00	0,00	0,00	0,9	0,2	0	0,91	0,19	0,00
0,00	0,50	0,00	0,00	0,5	0,4	0,7	0,50	0,40	0,70
0,00	0,00	0,50	0,00	0,3	0,4	0,8	0,30	0,40	0,80
0,00	0,00	0,00	0,50	0,50	0,70	0	0,59	0,57	-0,01
0,10	0,00	0,00	0,00	0,50	0,70	0	0,45	0,76	0,01
0,00	1,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,00
0,00	0,00	1,00	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,00	0,00	1,00	0,9	0,20	0	0,86	0,26	0,01
0,50	1,00	0,00	0,00	0,6	0,3	0,1	0,61	0,29	0,10
1,00	0,50	0,00	0,00	0,5	0,5	0,3	0,51	0,49	0,30
0,00	1,00	0,50	0,00	0,8	0,7	0,3	0,80	0,70	0,30
0,00	0,00	1,00	0,50	0,4	0,6	0,1	0,40	0,61	0,10
1,00	1,00	0,00	0,00	0,5	0,5	0	0,48	0,53	0,00
0,00	1,00	0,50	0,00	0,3	0,3	0,8	0,30	0,30	0,80
0,00	0,00	0,10	0,00	0,4	0,2	0,5	0,40	0,20	0,50
0,00	0,00	0,00	1,00	0,8	0,5	1	0,80	0,50	1,00

1	2	3	4	5	6	7	8	9	10
0,50	0,00	0,00	0,00	0,55	0,3	0,1	0,45	0,35	0,30
0,00	0,50	0,00	0,00	0,5	0,5	0,5	0,45	0,53	0,59
0,00	0,00	0,50	0,00	0,9	0,2	0	0,85	0,23	0,09
0,00	0,00	0,00	0,50	0,5	0,4	0,7	0,45	0,43	0,79
0,10	0,00	0,00	0,00	0,3	0,4	0,8	0,47	0,29	0,46
0,00	1,00	0,00	0,00	0,50	0,70	0	0,57	0,61	-0,13
0,00	0,00	1,00	0,00	0,50	0,70	0	0,52	0,69	-0,03
0,00	0,00	0,00	1,00	0,8	0,5	1	0,82	0,49	0,96
0,50	1,00	0,00	0,00	0,55	0,3	0,1	0,45	0,46	0,29
1,00	0,50	0,00	0,00	0,5	0,5	0,5	0,52	0,49	0,45
0,00	1,00	0,50	0,00	0,9	0,2	0	0,90	0,20	0,00
0,00	0,00	1,00	0,50	0,5	0,4	0,7	0,50	0,40	0,70
1,00	1,00	0,00	0,00	0,3	0,4	0,8	0,34	0,33	0,73
0,00	1,00	0,50	0,00	0,50	0,70	0	0,50	0,70	0,00
0,00	0,00	0,10	0,00	0,50	0,70	0	0,50	0,70	0,00
0,00	0,00	0,00	1,00	0,70	0,30	1	0,70	0,30	1,00

Продолжение таблицы В1

ПРИЛОЖЕНИЕ Г

В	ходные	е даннь	ie	Экспер	тные зна	ачения	Гибридная сеть			
Q _π , %	Q _{xb} , %	Q _к , %	Р	n, Гц	d, мм	m, %	n, Гц	d, мм	m, %	
1	2	3	4	5	6	7	8	9	10	
0,00	0,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,00	
0,50	0,00	0,00	0,00	0,5	0,5	0,5	0,50	0,50	0,50	
0,00	0,50	0,00	0,00	0,9	0,20	0	0,90	0,20	0,00	
0,00	0,00	0,50	0,00	0,6	0,3	0,1	0,60	0,30	0,10	
0,00	0,00	0,00	0,50	0,5	0,5	0,3	0,50	0,50	0,30	
1,00	0,00	0,00	0,00	0,8	0,7	0,3	0,80	0,70	0,30	
0,00	1,00	0,00	0,00	0,4	0,6	0,1	0,40	0,60	0,10	
0,00	0,00	1,00	0,00	0,5	0,5	0	0,50	0,50	0,00	
0,00	0,00	0,00	1,00	0,3	0,3	0,8	0,30	0,30	0,80	
0,50	1,00	0,00	0,00	0,4	0,2	0,5	0,40	0,20	0,50	
1,00	0,50	0,00	0,00	0,8	0,5	1	0,80	0,50	1,00	
0,00	1,00	0,50	0,00	0,55	0,3	0,1	0,55	0,30	0,10	
0,00	0,00	1,00	0,50	0,5	0,5	0,5	0,48	0,50	0,50	
1,00	1,00	0,00	0,00	0,9	0,2	0	0,83	0,20	0,00	
0,00	1,00	0,50	1,00	0,5	0,4	0,7	0,52	0,40	0,70	
0,00	0,00	1,00	1,00	0,3	0,4	0,8	0,30	0,40	0,80	
0,00	0,00	0,00	1,00	0,50	0,70	0	0,50	0,70	0,00	
0,50	0,00	0,00	0,00	0,50	0,70	0	0,55	0,70	0,00	
0,00	0,50	0,00	0,00	0,5	0,5	0	0,57	0,50	0,00	
0,00	0,00	0,50	0,00	0,5	0,5	0,5	0,52	0,50	0,50	
0,00	0,00	0,00	0,50	0,9	0,20	0	0,90	0,20	0,00	
0,10	0,00	0,00	0,00	0,6	0,3	0,1	0,60	0,30	0,10	
0,00	1,00	0,00	0,00	0,5	0,5	0,3	0,50	0,50	0,30	
0,00	0,00	1,00	0,00	0,8	0,7	0,3	0,80	0,70	0,30	
0,00	0,00	0,00	1,00	0,4	0,6	0,1	0,40	0,60	0,10	
0,50	1,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,00	
1	0,5	0	0	0,3	0,3	0,8	0,30	0,30	0,80	

Таблица Г1 – Результаты моделирования гибридной сети

Продолжение таблицы Г1

1	2	3	4	5	6	7	8	9	10
0,00	1,00	0,50	0,00	0,4	0,2	0,5	0,40	0,20	0,50
0,00	0,00	1,00	0,50	0,8	0,5	1	0,80	0,50	1,00
1,00	1,00	0,00	0,00	0,55	0,3	0,1	0,55	0,30	0,10
0,00	1,00	0,50	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,00	0,00	1,00	0,5	0,5	0,3	0,50	0,50	0,30
0,50	1,00	0,00	0,00	0,8	0,7	0,3	0,80	0,70	0,30
1,00	0,50	0,00	0,00	0,4	0,6	0,1	0,40	0,60	0,10
0,00	1,00	0,50	0,00	0,5	0,5	0	0,50	0,50	0,00
0,00	0,00	1,00	0,50	0,3	0,3	0,8	0,30	0,30	0,80
1,00	1,00	0,00	0,00	0,4	0,2	0,5	0,40	0,20	0,50
0,00	1,00	0,50	0,00	0,8	0,5	1	0,80	0,40	1,00
0,00	0,00	0,10	0,00	0,55	0,3	0,1	0,55	0,40	0,10
0,00	0,00	0,00	1,00	0,5	0,5	0,5	0,50	0,55	0,55
0,50	0,00	0,00	0,00	0,9	0,2	0	0,90	0,20	0,00
0,00	0,50	0,00	0,00	0,5	0,4	0,7	0,50	0,40	0,70
0,00	0,00	0,50	0,00	0,3	0,4	0,8	0,30	0,40	0,80
0,00	0,00	0,00	0,50	0,50	0,70	0	0,50	0,70	0,00
0,10	0,00	0,00	0,00	0,50	0,70	0	0,50	0,70	0,00
0,00	1,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,00
0,00	0,00	1,00	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	0,00	0,00	1,00	0,9	0,20	0	0,90	0,20	0,00
0,50	1,00	0,00	0,00	0,6	0,3	0,1	0,60	0,30	0,10
1,00	0,50	0,00	0,00	0,5	0,5	0,3	0,50	0,50	0,30
0,00	1,00	0,50	0,00	0,8	0,7	0,3	0,80	0,70	0,30
0,00	0,00	1,00	0,50	0,4	0,6	0,1	0,40	0,60	0,10
1,00	1,00	0,00	0,00	0,5	0,5	0	0,50	0,50	0,00
0,00	1,00	0,50	0,00	0,3	0,3	0,8	0,30	0,30	0,80
0,00	0,00	0,10	0,00	0,4	0,2	0,5	0,40	0,20	0,50
0,00	0,00	0,00	1,00	0,8	0,5	1	0,80	0,50	1,00
0,50	0,00	0,00	0,00	0,55	0,3	0,1	0,55	0,30	0,30
0,00	0,50	0,00	0,00	0,5	0,5	0,5	0,50	0,50	0,59

	r								
1	2	3	4	5	6	7	8	9	10
0,00	0,00	0,50	0,00	0,9	0,2	0	0,90	0,20	0,09
0,00	0,00	0,00	0,50	0,5	0,4	0,7	0,50	0,40	0,70
0,10	0,00	0,00	0,00	0,3	0,4	0,8	0,30	0,40	0,50
0,00	1,00	0,00	0,00	0,50	0,70	0	0,50	0,70	0,02
0,00	0,00	1,00	0,00	0,50	0,70	0	0,50	0,70	0,02
0,00	0,00	0,00	1,00	0,8	0,5	1	0,80	0,50	0,90
0,50	1,00	0,00	0,00	0,55	0,3	0,1	0,55	0,30	0,10
1,00	0,50	0,00	0,00	0,5	0,5	0,5	0,50	0,50	0,50
0,00	1,00	0,50	0,00	0,9	0,2	0	0,90	0,20	0,10
0,00	0,00	1,00	0,50	0,5	0,4	0,7	0,50	0,40	0,70
1,00	1,00	0,00	0,00	0,3	0,4	0,8	0,30	0,40	0,73
0,00	1,00	0,50	0,00	0,50	0,70	0	0,50	0,70	0,00
0,00	0,00	0,10	0,00	0,50	0,70	0	0,50	0,70	0,00
0,00	0,00	0,00	1,00	0,70	0,30	1	0,70	0,30	0,90

Продолжение таблицы ГІ